Page 1 of 27 12311 ... LastLast
Results 1 to 10 of 267

Thread: K15 World - new DIY calculator

  1. #1
    Banned
    Posts
    6,337
    Sex
    Location
    Torun
    Ethnicity
    Central 75% + 25% Mazovia
    Nationality
    Pole
    Y-DNA
    R1a > M198 > YP 1337

    Poland

    K15 World - new DIY calculator

    After some tests with K12 I developed better version - K15 with such components:

    West-African
    Siberian
    South-Indian
    NE-Asian
    Kalash
    Papuan
    Paleo-African
    Samoyedic
    NE-Euro
    SE-Asian
    Tibeto-Burmese
    SW-Euro
    Caucasian
    Amerindian
    Red-Sea

    This time too many Asian Mongoloid components maybe, but results are much better than in K12. Still I run ADMIXTURE in unsuprevised mode only.
    K12 project is closed now (for some time at least).

    There are used different datatsets with more populations (427) from Europe, but also from North Africa, West Asia and SE-Asia.

    I prepared also Admix4 oracle and nMonte files.

    https://drive.google.com/open?id=1HV...gymk2bYPrGWAze
    Last edited by lukaszM; 11-23-2017 at 10:25 PM.

  2. The Following 26 Users Say Thank You to lukaszM For This Useful Post:

     Aha (11-24-2017),  Alain (04-05-2018),  Arlus (11-24-2017),  bmoney (02-02-2018),  Canarioguanche (08-05-2018),  evon (11-24-2017),  Exosuits (11-25-2017),  JFWinstone (11-23-2017),  jortita (11-24-2017),  kerbal (11-29-2017),  khanabadoshi (11-23-2017),  kush (11-23-2017),  MatAust21 (11-24-2017),  michal3141 (11-23-2017),  MonkeyDLuffy (11-24-2017),  Nibelung (12-06-2017),  NiloSaharan (11-24-2017),  Oleg (Rus) (02-01-2018),  Reza (11-23-2017),  Sea Warrior (11-26-2017),  SSlava (11-25-2017),  StarDS9 (03-28-2018),  Tolan (11-24-2017),  Tomenable (11-25-2017),  Zayd (11-24-2017),  ZephyrousMandaru (11-24-2017)

  3. #2
    Banned
    Posts
    6,337
    Sex
    Location
    Torun
    Ethnicity
    Central 75% + 25% Mazovia
    Nationality
    Pole
    Y-DNA
    R1a > M198 > YP 1337

    Poland
    Some results

    Reza (Bangladesh)

    0.01% West-African
    1.40% Siberian
    47.21% South-Indian
    1.37% Ne-Asian
    11.43% Kalash
    0.38% Papuan
    0.19% Paleo-African
    2.04% Samoyedic
    4.81% NE-Euro
    5.54% SE-Asian
    8.48% Tibeto-Burmese
    0.00% SW-Euro
    15.13% Caucasian
    0.62% Amerindian
    1.41% Red-Sea

    nMonte

    Code:
    [1] "1. CLOSEST SINGLE ITEM DISTANCES"
    Bangladeshi     Bengali   UP_Muslim     Punjabi      Tharus    Dharkars 
       5.146196    9.741339   11.482748   12.235465   12.894021   13.361107 
      Kshatriya        Thak 
      13.426754   13.599665
    Admix4


    Least-squares method.
    Code:
    Using 1 population approximation:
    1 Bangladeshi @ 5,094862
    2 Bengali @ 9,575421
    3 UP_Muslim @ 11,334721
    4 Punjabi @ 12,120715
    5 Tharus @ 12,776273
    6 Dharkars @ 13,211828
    7 Kshatriya @ 13,424402
    8 Thak @ 13,526176
    9 GujaratiC @ 13,718124
    10 Kanjars @ 13,821239
    424 iterations.
    
    Using 2 populations approximation:
    1 Burusho+Dhurwa @ 3,610389
    2 Burusho+Mawasi @ 3,771481
    3 Bhunjia+Burusho @ 3,939349
    4 Asur+Burusho @ 4,136554
    5 Burusho+Ho @ 4,407716
    6 Burusho+Savara @ 4,635382
    7 Dhurwa+Pathan @ 4,722001
    8 Savara+Sindhi @ 4,752059
    9 Pathan+Savara @ 5,058031
    10 Mawasi+Pathan @ 5,079474
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Dharkars +25% Brahmins_from_Tamil_Nadu +25% Khasi @ 2,234216
    2 50% Kshatriya +25% Khasi +25% Sakilli @ 2,239588
    3 50% GujaratiC +25% Kapu +25% Khasi @ 2,265929
    4 50% Thak +25% Kapu +25% Khasi @ 2,368902
    5 50% Kurumba +25% Khasi +25% Khsat @ 2,397765
    6 50% Kshatriya +25% Halakipikki +25% Khasi @ 2,411784
    7 50% Kshatriya +25% Khasi +25% North_Kannadi @ 2,418762
    8 50% Brahmins_from_Tamil_Nadu +25% Bonda +25% Brahmins_from_Uttaranchal @ 2,437539
    9 50% Kanjars +25% Brahmins_from_Tamil_Nadu +25% Khasi @ 2,469184
    10 50% Brahmins_from_Tamil_Nadu +25% Brahmins_from_Uttaranchal +25% Juang @ 2,477591
    8620186 iterations.
    
    Using 4 populations approximation:
    1 GujaratiC+Halakipikki+Khasi+Khsat @ 1,704401
    2 Khasi+Khsat+North_Kannadi+Thak @ 1,725129
    3 GujaratiC+Khasi+Khsat+North_Kannadi @ 1,730822
    4 Halakipikki+Khasi+Khsat+Thak @ 1,750887
    5 Brahmins_from_Tamil_Nadu+Khasi+Khsat+North_Kannadi @ 1,820485
    6 Brahmins_from_Tamil_Nadu+Halakipikki+Khasi+Khsat @ 1,837265
    7 Khasi+Khsat+Sakilli+Thak @ 1,93382
    8 Brahmin+Brahmins_from_Tamil_Nadu+Khasi+North_Kannadi @ 1,935677
    9 Brahmins_from_Tamil_Nadu+GujaratiB+Khasi+North_Kannadi @ 1,994451
    10 GujaratiC+Khasi+Khsat+Sakilli @ 2,033704
    11 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Khasi+North_Kannadi @ 2,042284
    12 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Halakipikki+Khasi @ 2,048811
    13 Chamar+GujaratiC+Khasi+Khsat @ 2,061629
    14 Brahmin+Brahmins_from_Tamil_Nadu+Halakipikki+Khasi @ 2,087322
    15 Brahmins_from_Tamil_Nadu+Chamar+Khasi+Kshatriya @ 2,097847
    16 Dharkars+Khasi+Khsat+Piramalai_Kallars @ 2,102301
    17 Chamar+Khasi+Khsat+Thak @ 2,107538
    18 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Khasi+Sakilli @ 2,117378
    19 Brahmins_from_Tamil_Nadu+GujaratiB+Halakipikki+Khasi @ 2,117577
    20 GujaratiC+Kapu+Khasi+Kshatriya @ 2,124569
    21116862 iterations.

    Gaussian method.
    Code:
    Noise dispersion set to 0,33296
    
    Using 1 population approximation:
    1 Bangladeshi @ 5,775034
    2 Bengali @ 6,137224
    3 Gond @ 9,242391
    4 Brahmins_from_Uttaranchal @ 9,29674
    5 Kol @ 9,65651
    6 Kapu @ 10,230392
    7 Tharus @ 10,90716
    8 Nepali_Brahmin @ 11,617456
    9 Chenchus @ 11,726843
    10 Chamar @ 11,996621
    424 iterations.
    
    Using 2 populations approximation:
    1 Bangladeshi+UP_Muslim @ 5,200221
    2 Bangladeshi+Kapu @ 5,274407
    3 Khsat+Mawasi @ 5,307913
    4 Bangladeshi+Thak @ 5,459049
    5 Burusho+Mawasi @ 5,459754
    6 Asur+Burusho @ 5,469426
    7 Bangladeshi+Dharkars @ 5,527178
    8 Bangladeshi+Meghawal @ 5,53864
    9 Bangladeshi+Bengali @ 5,580235
    10 Burusho+Dhurwa @ 5,591152
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Thak +25% Brahmins_from_Uttaranchal +25% Juang @ 3,901033
    2 50% Thak +25% Bonda +25% Brahmins_from_Uttaranchal @ 3,920638
    3 50% Thak +25% Khasi +25% UP_Muslim @ 3,96825
    4 50% Thak +25% Khasi +25% Meghawal @ 3,971668
    5 50% Thak +25% Khasi +25% Thak @ 4,01805
    6 50% Thak +25% Brahmins_from_Uttaranchal +25% Gadaba @ 4,036655
    7 50% UP_Muslim +25% Khasi +25% Thak @ 4,037051
    8 50% Thak +25% Dharkars +25% Khasi @ 4,043924
    9 50% Thak +25% Khasi +25% Kol @ 4,062285
    10 5

    Firemonkey (British)


    0.30% West-African
    0.00% Siberian
    0.54% South-Indian
    0.22% Ne-Asian
    9.03% Kalash
    0.00% Papuan
    0.48% Paleo-African
    1.91% Samoyedic
    47.62% NE-Euro
    0.37% SE-Asian
    0.00% Tibeto-Burmese
    29.70% SW-Euro
    6.85% Caucasian
    1.37% Amerindian
    1.61% Red-Sea

    nMonte
    Code:
    1] "1. CLOSEST SINGLE ITEM DISTANCES"
                         ceu                 Orcadian                  Austria 
                    3.219981                 3.968902                 4.846874 
            English_Kent_GBR Scottish_Argyll_Bute_GBR                    Irish 
                    4.945167                 5.001966                 5.621490 
                 French_West                Icelandic 
                    5.707225                 6.288356
    Orcadian 22.05
    Icelandic 14.60
    Irish 11.30
    Cossack_Zaporozhe 7.60
    English_Kent_GBR 5.75
    Ukraine_PL 3.15
    Spanish_Castilla_la_Mancha_IBS 2.80
    Basque 2.70
    Lithuania 2.70
    scottish1 2.35
    scottish2 2.35
    english 2.00
    Ukraine 1.85
    French_West 1.50
    Avar 1.20
    IT_South 1.20
    Ukraine_North 1.20
    Sweden 1.15
    Spanish_Valencia_IBS 0.95
    Tabassaran 0.80
    GreeceThessaly 0.75
    Kalash 0.70
    Polish1 0.70
    German 0.60
    Italian_North 0.60
    basque 0.55
    Latvian 0.50
    Piapoco 0.50
    Spanish_Castilla_y_Leon_IBS 0.50
    Serbian_B-H 0.45
    Spanish_Murcia_IBS 0.45
    Slovenian 0.40
    ceu 0.35
    Kosovo 0.35
    Surui 0.30
    Georgian_Laz 0.25
    Lezgin 0.25
    sardinian 0.25
    Scottish_Argyll_Bute_GBR 0.25
    Selkup 0.25
    Belarussian 0.15
    Slovakian 0.15
    Croat 0.10
    French_East 0.10
    Hungarian 0.10
    Igorot 0.10
    Ju_hoan_North 0.10
    Norwegian 0.10
    Spanish_Aragon_IBS 0.10
    Spanish_Pais_Vasco_IBS 0.10
    Austria 0.05
    Bosnian 0.05
    Canary_Islander 0.05
    Czech 0.05
    French_Northwest 0.05
    GreeceCentral 0.05
    IraqiJew 0.05
    Khomani 0.05
    Macedonian 0.05
    Mentawai 0.05
    Montenegro 0.05
    Muslim_Arab_Israel 0.05
    Serbia_Serbia 0.05
    Spanish_Andalucia_IBS 0.05
    Spanish_Cataluna_IBS 0.05


    Admix4

    Gaussian method.
    Code:
    Noise dispersion set to 0,33296
    
    Using 1 population approximation:
    1 Orcadian @ 2,725178
    2 English_Kent_GBR @ 3,057714
    3 Irish @ 3,446983
    4 CEU @ 3,704041
    5 Icelandic @ 3,84648
    6 French_West @ 3,87408
    7 German @ 4,091888
    8 Austria @ 4,422418
    9 Scottish_Argyll_Bute_GBR @ 4,437988
    10 Sweden @ 4,570549
    424 iterations.
    
    Using 2 populations approximation:
    1 Orcadian+Orcadian @ 2,725178
    2 English_Kent_GBR+Orcadian @ 2,784454
    3 English_Kent_GBR+Irish @ 2,925034
    4 German+Irish @ 2,985235
    5 Irish+Orcadian @ 2,988165
    6 English_Kent_GBR+English_Kent_GBR @ 3,057714
    7 German+Orcadian @ 3,089479
    8 Austria+Irish @ 3,097181
    9 Scottish1+Serbia_Serbia @ 3,107085
    10 Scottish2+Serbia_Serbia @ 3,107085
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Irish +25% Irish +25% Serbia_Serbia @ 2,301155
    2 50% Irish +25% Scottish1 +25% Serbia_Serbia @ 2,30693
    3 50% Irish +25% Scottish2 +25% Serbia_Serbia @ 2,30693
    4 50% Irish +25% Orcadian +25% Serbia_Serbia @ 2,451108
    5 50% Scottish1 +25% Irish +25% Serbia_Serbia @ 2,47493
    6 50% Scottish2 +25% Irish +25% Serbia_Serbia @ 2,47493
    7 50% Irish +25% english +25% Serbia_Serbia @ 2,507114
    8 50% Irish +25% English_Kent_GBR +25% Serbia_Serbia @ 2,533014
    9 50% Orcadian +25% Scottish1 +25% Serbia_Serbia @ 2,545557
    10 50% Orcadian +25% Scottish2 +25% Serbia_Serb
    Least-squares method.
    Code:
    Using 1 population approximation:
    1 CEU @ 3,030201
    2 Orcadian @ 3,725862
    3 Austria @ 4,620136
    4 English_Kent_GBR @ 4,763348
    5 Scottish_Argyll_Bute_GBR @ 4,868079
    6 Irish @ 5,338091
    7 French_West @ 5,558362
    8 Icelandic @ 6,004804
    9 German @ 6,74093
    10 Norwegian2 @ 7,873582
    424 iterations.
    
    Using 2 populations approximation:
    1 Hungarian+Scottish1 @ 1,640342
    2 Hungarian+Scottish2 @ 1,640342
    3 Croat+Scottish1 @ 1,916192
    4 Croat+Scottish2 @ 1,916192
    5 english+Hungarian @ 2,09203
    6 Scottish1+Slovenian @ 2,114075
    7 Scottish2+Slovenian @ 2,114075
    8 Scottish1+Serbian_B-H @ 2,339579
    9 Scottish2+Serbian_B-H @ 2,339579
    10 Bosnian+Scottish1 @ 2,615863
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Scottish_Argyll_Bute_GBR +25% Orcadian +25% Serbia_Serbia @ 1,048985
    2 50% Orcadian +25% Scottish_Argyll_Bute_GBR +25% Serbia_Serbia @ 1,08499
    3 50% Scottish_Argyll_Bute_GBR +25% Scottish_Argyll_Bute_GBR +25% Serbia_Serbia @ 1,124073
    4 50% Orcadian +25% Bosnian +25% Scottish_Argyll_Bute_GBR @ 1,18055
    5 50% Orcadian +25% Norwegian2 +25% Serbian_Serbia @ 1,187137
    6 50% Scottish_Argyll_Bute_GBR +25% Bosnian +25% Orcadian @ 1,202965
    7 50% Orcadian +25% Orcadian +25% Serbia_Serbia @ 1,222309
    8 50% Norwegian2 +25% Macedonian +25% Orcadian @ 1,22616
    9 50% Orcadian +25% Scottish_Argyll_Bute_GBR +25% Serbian_B-H @ 1,226273
    10 50% Orcadian +25% Orcadian +25% Serbian_B-H @ 1,233416
    9682737 iterations.
    
    Using 4 populations approximation:
    1 Orcadian+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,048985
    2 Orcadian+Orcadian+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,08499
    3 Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,124073
    4 Bosnian+Orcadian+Orcadian+Scottish_Argyll_Bute_GBR @ 1,18055
    5 Norwegian2+Orcadian+Orcadian+Serbian_Serbia @ 1,187137
    6 Bosnian+Orcadian+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR @ 1,202965
    7 Orcadian+Orcadian+Orcadian+Serbia_Serbia @ 1,222309
    8 Macedonian+Norwegian2+Norwegian2+Orcadian @ 1,22616
    9 Orcadian+Orcadian+Scottish_Argyll_Bute_GBR+Serbian_B-H @ 1,226273
    10 Orcadian+Orcadian+Orcadian+Serbian_B-H @ 1,233416
    11 Cossack_Zaporozhe+French_East+Scottish_Argyll_Bute_GBR+Scottish1 @ 1,241505
    12 Cossack_Zaporozhe+French_East+Scottish_Argyll_Bute_GBR+Scottish2 @ 1,241505
    13 Bosnian+Orcadian+Orcadian+Orcadian @ 1,25709
    14 Bulgarian+Icelandic+Norwegian2+Norwegian2 @ 1,257712
    15 Icelandic+Montenegro+Norwegian2+Orcadian @ 1,259745
    16 Cossack_Zaporozhe+French_East+Orcadian+Scottish1 @ 1,263855
    17 Cossack_Zaporozhe+French_East+Orcadian+Scottish2 @ 1,263855
    18 Cossack_Zaporozhe+French_Northwest+Scottish_Argyll_Bute_GBR+Scottish1 @ 1,273265
    19 Cossack_Zaporozhe+French_Northwest+Scottish_Argyll_Bute_GBR+Scottish2 @ 1,273265
    20 Icelandic+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbian_Serbia @ 1,27508
    30355730 iterations.
    Last edited by lukaszM; 11-23-2017 at 10:28 PM.

  4. The Following 8 Users Say Thank You to lukaszM For This Useful Post:

     firemonkey (11-24-2017),  jortita (11-24-2017),  khanabadoshi (11-23-2017),  MonkeyDLuffy (11-24-2017),  NiloSaharan (11-23-2017),  Reza (11-23-2017),  Sea Warrior (11-26-2017),  Zayd (11-24-2017)

  5. #3
    Banned
    Posts
    6,337
    Sex
    Location
    Torun
    Ethnicity
    Central 75% + 25% Mazovia
    Nationality
    Pole
    Y-DNA
    R1a > M198 > YP 1337

    Poland
    Tomorrow I'll post results from rawdata which I've got before form users.

  6. The Following User Says Thank You to lukaszM For This Useful Post:

     michal3141 (11-23-2017)

  7. #4
    Registered Users
    Posts
    558
    Sex
    Location
    England
    Ethnicity
    Mixed
    Nationality
    British

    United Kingdom Netherlands Mauritius Madagascar India China
    Looks interesting
    3/4 European, 1/4 Mauritian Creole. Genealogy enthusiast and Wow nerd.

  8. The Following User Says Thank You to JFWinstone For This Useful Post:

     lukaszM (11-24-2017)

  9. #5
    Registered Users
    Posts
    709
    Sex
    Location
    Krakow
    Ethnicity
    Polish
    Nationality
    Pole
    Y-DNA
    R1a > M458 > Y23110
    mtDNA
    J1c1

    Poland
    My results:

    0.00% West-African
    0.05% Siberian
    0.15% South-Indian
    0.23% Ne-Asian
    2.51% Kalash
    0.00% Papuan
    0.50% Paleo-African
    3.85% Samoyedic
    56.60% NE-Euro
    0.00% SE-Asian
    0.02% Tibeto-Burmese
    19.52% SW-Euro
    11.64% Caucasian
    1.06% Amerindian
    3.87% Red-Sea

  10. The Following 8 Users Say Thank You to michal3141 For This Useful Post:

     Alain (04-05-2018),  AlexRus (10-02-2018),  jortita (11-24-2017),  kush (11-23-2017),  lukaszM (11-24-2017),  MonkeyDLuffy (11-24-2017),  Sea Warrior (11-26-2017),  SSlava (11-25-2017)

  11. #6
    Registered Users
    Posts
    440
    Sex
    Ethnicity
    Swahili
    Nationality
    Kenyan

    Kenya Tanzania African Union
    77.03% West-African
    0.01% Siberian
    0.69% South-Indian
    0.00% Ne-Asian
    1.13% Kalash
    0.13% Papuan
    10.78% Paleo-African
    0.15% Samoyedic
    0.00% NE-Euro
    0.00% SE-Asian
    0.00% Tibeto-Burmese
    0.00% SW-Euro
    0.00% Caucasian
    0.42% Amerindian
    9.66% Red-Sea
    Last edited by SWAHILLI_PRINCE16; 11-24-2017 at 12:13 AM.

  12. The Following 5 Users Say Thank You to SWAHILLI_PRINCE16 For This Useful Post:

     jortita (11-24-2017),  kush (11-24-2017),  lukaszM (11-24-2017),  MonkeyDLuffy (11-24-2017),  NiloSaharan (11-24-2017)

  13. #7
    Registered Users
    Posts
    371
    Sex
    Ethnicity
    Telugu
    Y-DNA
    L1a1
    mtDNA
    J1

    India United States of America
    0.93% West-African
    0.06% Siberian
    52.30% South-Indian
    0.07% Ne-Asian
    19.19% Kalash
    0.88% Papuan
    0.25% Paleo-African
    0.02% Samoyedic
    0.46% NE-Euro
    0.18% SE-Asian
    3.90% Tibeto-Burmese
    0.00% SW-Euro
    21.40% Caucasian
    0.35% Amerindian
    0.00% Red-Sea

    Oracle
    Code:
    Least-squares method.
    
    Using 1 population approximation:
    1 GujaratiD @ 4.732253
    2 Tharus @ 5.782963
    3 Meghawal @ 5.956878
    4 Velama @ 6.342716
    5 Kurmi @ 6.993561
    6 GujaratiC @ 7.350134
    7 UP_Muslim @ 7.525125
    8 Thak @ 7.71217
    9 Punjabi @ 7.93675
    10 Brahmins_from_Tamil_Nadu @ 8.420054
    424 iterations.
    
    Using 2 populations approximation:
    1 GujaratiD+GujaratiD @ 4.732253
    2 GujaratiD+Tharus @ 5.037153
    3 GujaratiD+Meghawal @ 5.052078
    4 Brahmins_from_Tamil_Nadu+Velama @ 5.070294
    5 GujaratiC+Velama @ 5.236778
    6 Meghawal+Velama @ 5.238129
    7 GujaratiD+Velama @ 5.257849
    8 Balija1+Meena @ 5.326765
    9 Tharus+Velama @ 5.364125
    10 Meena+Velama @ 5.378937
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Velama +25% Chenchus +25% Sindhi @ 4.418311
    2 50% Velama +25% GujaratiD +25% Meena @ 4.513607
    3 50% Velama +25% Meena +25% Velama @ 4.571562
    4 50% Velama +25% Bengali +25% Meena @ 4.573279
    5 50% Velama +25% Burusho +25% Sakilli @ 4.598365
    6 50% Velama +25% Meena +25% Tharus @ 4.61228
    7 50% Velama +25% Piramalai_Kallars +25% Sindhi @ 4.632131
    8 50% Velama +25% Meena +25% Meghawal @ 4.643899
    9 50% GujaratiD +25% Meena +25% Velama @ 4.656147
    10 50% Velama +25% Dusadh +25% Sindhi @ 4.671348
    8956724 iterations.
    
    Using 4 populations approximation:
    1 Chenchus+Sindhi+Velama+Velama @ 4.418311
    2 GujaratiD+Meena+Velama+Velama @ 4.513607
    3 Meena+Velama+Velama+Velama @ 4.571562
    4 Bengali+Meena+Velama+Velama @ 4.573279
    5 Burusho+Sakilli+Velama+Velama @ 4.598365
    6 Balija1+GujaratiD+Meena+Velama @ 4.612257
    7 Meena+Tharus+Velama+Velama @ 4.61228
    8 Piramalai_Kallars+Sindhi+Velama+Velama @ 4.632131
    9 Meena+Meghawal+Velama+Velama @ 4.643899
    10 GujaratiD+GujaratiD+Meena+Velama @ 4.656147
    11 Chenchus+GujaratiD+Sindhi+Velama @ 4.656365
    12 Bengali+GujaratiD+Meena+Velama @ 4.662481
    13 Dusadh+Sindhi+Velama+Velama @ 4.671348
    14 GujaratiB+Velama+Velama+Velama @ 4.677972
    15 Burusho+Piramalai_Kallars+Velama+Velama @ 4.685025
    16 Kol+Sindhi+Velama+Velama @ 4.688775
    17 Nepali_Brahmin+Velama+Velama+Velama @ 4.688973
    18 Brahmins_from_Tamil_Nadu+Meghawal+Velama+Velama @ 4.690656
    19 Chenchus+Kurmi+Sindhi+Velama @ 4.693839
    20 Balija1+GujaratiD+GujaratiD+Meena @ 4.699252
    39419646 iterations.
    
    
    Gaussian method.
    Noise dispersion set to 0.33296
    
    Using 1 population approximation:
    1 Balija1 @ 4.70551
    2 Tharus @ 5.458814
    3 Velama @ 5.511507
    4 UP_Muslim @ 5.631886
    5 Meghawal @ 5.847168
    6 Bengali @ 5.916209
    7 GujaratiD @ 5.986546
    8 Piramalai_Kallars @ 6.025016
    9 Uttar_Pradesh_Scheduled_Caste @ 6.104585
    10 Dharkars @ 6.133285
    424 iterations.
    
    Using 2 populations approximation:
    1 Balija1+Balija1 @ 4.70551
    2 Balija1+Velama @ 4.838543
    3 Balija1+Meghawal @ 5.120018
    4 Balija1+GujaratiD @ 5.123277
    5 Bengali+Velama @ 5.145101
    6 Balija1+Tamil_Nadu_Scheduled_Caste @ 5.162054
    7 Balija1+Kurmi @ 5.223442
    8 UP_Muslim+Velama @ 5.225494
    9 Balija1+UP_Muslim @ 5.263555
    10 Balija1+Brahmins_from_Tamil_Nadu @ 5.300667
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Balija1 +25% Balija1 +25% Velama @ 4.781297
    2 50% Balija1 +25% Velama +25% Velama @ 4.838543
    3 50% Velama +25% Bengali +25% Velama @ 4.885239
    4 50% Velama +25% Bangladeshi +25% Velama @ 4.925788
    5 50% Balija1 +25% Balija1 +25% Meghawal @ 4.934665
    6 50% Balija1 +25% Balija1 +25% GujaratiD @ 4.935683
    7 50% Balija1 +25% Balija1 +25% Tamil_Nadu_Scheduled_Caste @ 4.957298
    8 50% Balija1 +25% Balija1 +25% Kurmi @ 4.970004
    9 50% Velama +25% Balija1 +25% Velama @ 5.000462
    10 50% Balija1 +25% Tamil_Nadu_Scheduled_Caste +25% Velama @ 5.000908
    37902188 iterations.
    
    Using 4 populations approximation:
    1 Balija1+Balija1+Balija1+Balija1 @ 4.70551
    2 Balija1+Balija1+Balija1+Velama @ 4.781297
    3 Balija1+Balija1+Velama+Velama @ 4.838543
    4 Bengali+Velama+Velama+Velama @ 4.885239
    5 Bangladeshi+Velama+Velama+Velama @ 4.925788
    6 Balija1+Balija1+Balija1+Meghawal @ 4.934665
    7 Balija1+Balija1+Balija1+GujaratiD @ 4.935683
    8 Balija1+Balija1+Balija1+Tamil_Nadu_Scheduled_Caste @ 4.957298
    9 Balija1+Balija1+Balija1+Kurmi @ 4.970004
    10 Balija1+Velama+Velama+Velama @ 5.000462
    11 Balija1+Balija1+Tamil_Nadu_Scheduled_Caste+Velama @ 5.000908
    12 Balija1+Balija1+GujaratiD+Velama @ 5.010497
    13 Balija1+Bengali+Velama+Velama @ 5.011491
    14 Chenchus+Velama+Velama+Velama @ 5.020476
    15 Bengali+Tamil_Nadu_Scheduled_Caste+Velama+Velama @ 5.024459
    16 Balija1+Balija1+Meghawal+Velama @ 5.026492
    17 Balija1+Balija1+Balija1+Brahmins_from_Tamil_Nadu @ 5.027693
    18 Bengali+GujaratiD+Velama+Velama @ 5.057775
    19 Balija1+Balija1+Balija1+GujaratiC @ 5.059377
    20 Balija1+Balija1+Kurmi+Velama @ 5.062553
    1359015510 iterations.
    nMonte
    Code:
    [1] "1. CLOSEST SINGLE ITEM DISTANCES"
    GujaratiD    Tharus  Meghawal    Velama     Kurmi GujaratiC UP_Muslim      Thak 
     4.672624  5.515657  5.707324  6.500425  6.998208  7.089691  7.354488  7.441713 
    
    [1] "distance%=2.6367 / distance=0.026367"
    
             kush
                                        
    Velama                         51.45
    GujaratiD                      19.50
    Tamil_Nadu_Scheduled_Caste      6.75
    Balija1                         6.55
    Balochi                         5.75
    Kusunda                         4.45
    Kalash                          2.05
    Brahui                          1.05
    Kurumba                         0.75
    Kurmi                           0.65
    Makrani                         0.35
    Piramalai_Kallars               0.30
    Tharus                          0.20
    Brahmins_from_Tamil_Nadu        0.15
    GujaratiC                       0.05
    Last edited by kush; 11-24-2017 at 08:39 AM.

  14. The Following 7 Users Say Thank You to kush For This Useful Post:

     Arlus (11-24-2017),  bmoney (11-24-2017),  jortita (11-24-2017),  khanabadoshi (11-24-2017),  lukaszM (11-24-2017),  ssamlal (11-25-2017),  Zayd (11-24-2017)

  15. #8
    Banned
    Posts
    6,337
    Sex
    Location
    Torun
    Ethnicity
    Central 75% + 25% Mazovia
    Nationality
    Pole
    Y-DNA
    R1a > M198 > YP 1337

    Poland
    Averages are in nMonte or Admix4 spreadsheet files

  16. #9
    Registered Users
    Posts
    440
    Sex
    Ethnicity
    Swahili
    Nationality
    Kenyan

    Kenya Tanzania African Union
    Problem fixed
    Last edited by SWAHILLI_PRINCE16; 11-24-2017 at 01:23 AM.

  17. #10
    Gold Member Class
    Posts
    2,564
    Sex
    Location
    Calne,England
    Ethnicity
    British and Irish
    Nationality
    Great Britain
    Y-DNA
    E-Y45878
    mtDNA
    H67

    United Kingdom Scotland England Ireland
    Quote Originally Posted by lukaszM View Post
    Some results

    Reza (Bangladesh)

    0.01% West-African
    1.40% Siberian
    47.21% South-Indian
    1.37% Ne-Asian
    11.43% Kalash
    0.38% Papuan
    0.19% Paleo-African
    2.04% Samoyedic
    4.81% NE-Euro
    5.54% SE-Asian
    8.48% Tibeto-Burmese
    0.00% SW-Euro
    15.13% Caucasian
    0.62% Amerindian
    1.41% Red-Sea

    nMonte

    Code:
    [1] "1. CLOSEST SINGLE ITEM DISTANCES"
    Bangladeshi     Bengali   UP_Muslim     Punjabi      Tharus    Dharkars 
       5.146196    9.741339   11.482748   12.235465   12.894021   13.361107 
      Kshatriya        Thak 
      13.426754   13.599665
    Admix4


    Least-squares method.
    Code:
    Using 1 population approximation:
    1 Bangladeshi @ 5,094862
    2 Bengali @ 9,575421
    3 UP_Muslim @ 11,334721
    4 Punjabi @ 12,120715
    5 Tharus @ 12,776273
    6 Dharkars @ 13,211828
    7 Kshatriya @ 13,424402
    8 Thak @ 13,526176
    9 GujaratiC @ 13,718124
    10 Kanjars @ 13,821239
    424 iterations.
    
    Using 2 populations approximation:
    1 Burusho+Dhurwa @ 3,610389
    2 Burusho+Mawasi @ 3,771481
    3 Bhunjia+Burusho @ 3,939349
    4 Asur+Burusho @ 4,136554
    5 Burusho+Ho @ 4,407716
    6 Burusho+Savara @ 4,635382
    7 Dhurwa+Pathan @ 4,722001
    8 Savara+Sindhi @ 4,752059
    9 Pathan+Savara @ 5,058031
    10 Mawasi+Pathan @ 5,079474
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Dharkars +25% Brahmins_from_Tamil_Nadu +25% Khasi @ 2,234216
    2 50% Kshatriya +25% Khasi +25% Sakilli @ 2,239588
    3 50% GujaratiC +25% Kapu +25% Khasi @ 2,265929
    4 50% Thak +25% Kapu +25% Khasi @ 2,368902
    5 50% Kurumba +25% Khasi +25% Khsat @ 2,397765
    6 50% Kshatriya +25% Halakipikki +25% Khasi @ 2,411784
    7 50% Kshatriya +25% Khasi +25% North_Kannadi @ 2,418762
    8 50% Brahmins_from_Tamil_Nadu +25% Bonda +25% Brahmins_from_Uttaranchal @ 2,437539
    9 50% Kanjars +25% Brahmins_from_Tamil_Nadu +25% Khasi @ 2,469184
    10 50% Brahmins_from_Tamil_Nadu +25% Brahmins_from_Uttaranchal +25% Juang @ 2,477591
    8620186 iterations.
    
    Using 4 populations approximation:
    1 GujaratiC+Halakipikki+Khasi+Khsat @ 1,704401
    2 Khasi+Khsat+North_Kannadi+Thak @ 1,725129
    3 GujaratiC+Khasi+Khsat+North_Kannadi @ 1,730822
    4 Halakipikki+Khasi+Khsat+Thak @ 1,750887
    5 Brahmins_from_Tamil_Nadu+Khasi+Khsat+North_Kannadi @ 1,820485
    6 Brahmins_from_Tamil_Nadu+Halakipikki+Khasi+Khsat @ 1,837265
    7 Khasi+Khsat+Sakilli+Thak @ 1,93382
    8 Brahmin+Brahmins_from_Tamil_Nadu+Khasi+North_Kannadi @ 1,935677
    9 Brahmins_from_Tamil_Nadu+GujaratiB+Khasi+North_Kannadi @ 1,994451
    10 GujaratiC+Khasi+Khsat+Sakilli @ 2,033704
    11 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Khasi+North_Kannadi @ 2,042284
    12 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Halakipikki+Khasi @ 2,048811
    13 Chamar+GujaratiC+Khasi+Khsat @ 2,061629
    14 Brahmin+Brahmins_from_Tamil_Nadu+Halakipikki+Khasi @ 2,087322
    15 Brahmins_from_Tamil_Nadu+Chamar+Khasi+Kshatriya @ 2,097847
    16 Dharkars+Khasi+Khsat+Piramalai_Kallars @ 2,102301
    17 Chamar+Khasi+Khsat+Thak @ 2,107538
    18 Brahmins_from_Tamil_Nadu+Brahmins_from_Uttar_Pradesh+Khasi+Sakilli @ 2,117378
    19 Brahmins_from_Tamil_Nadu+GujaratiB+Halakipikki+Khasi @ 2,117577
    20 GujaratiC+Kapu+Khasi+Kshatriya @ 2,124569
    21116862 iterations.

    Gaussian method.
    Code:
    Noise dispersion set to 0,33296
    
    Using 1 population approximation:
    1 Bangladeshi @ 5,775034
    2 Bengali @ 6,137224
    3 Gond @ 9,242391
    4 Brahmins_from_Uttaranchal @ 9,29674
    5 Kol @ 9,65651
    6 Kapu @ 10,230392
    7 Tharus @ 10,90716
    8 Nepali_Brahmin @ 11,617456
    9 Chenchus @ 11,726843
    10 Chamar @ 11,996621
    424 iterations.
    
    Using 2 populations approximation:
    1 Bangladeshi+UP_Muslim @ 5,200221
    2 Bangladeshi+Kapu @ 5,274407
    3 Khsat+Mawasi @ 5,307913
    4 Bangladeshi+Thak @ 5,459049
    5 Burusho+Mawasi @ 5,459754
    6 Asur+Burusho @ 5,469426
    7 Bangladeshi+Dharkars @ 5,527178
    8 Bangladeshi+Meghawal @ 5,53864
    9 Bangladeshi+Bengali @ 5,580235
    10 Burusho+Dhurwa @ 5,591152
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Thak +25% Brahmins_from_Uttaranchal +25% Juang @ 3,901033
    2 50% Thak +25% Bonda +25% Brahmins_from_Uttaranchal @ 3,920638
    3 50% Thak +25% Khasi +25% UP_Muslim @ 3,96825
    4 50% Thak +25% Khasi +25% Meghawal @ 3,971668
    5 50% Thak +25% Khasi +25% Thak @ 4,01805
    6 50% Thak +25% Brahmins_from_Uttaranchal +25% Gadaba @ 4,036655
    7 50% UP_Muslim +25% Khasi +25% Thak @ 4,037051
    8 50% Thak +25% Dharkars +25% Khasi @ 4,043924
    9 50% Thak +25% Khasi +25% Kol @ 4,062285
    10 5

    Firemonkey (British)


    0.30% West-African
    0.00% Siberian
    0.54% South-Indian
    0.22% Ne-Asian
    9.03% Kalash
    0.00% Papuan
    0.48% Paleo-African
    1.91% Samoyedic
    47.62% NE-Euro
    0.37% SE-Asian
    0.00% Tibeto-Burmese
    29.70% SW-Euro
    6.85% Caucasian
    1.37% Amerindian
    1.61% Red-Sea

    nMonte
    Code:
    1] "1. CLOSEST SINGLE ITEM DISTANCES"
                         ceu                 Orcadian                  Austria 
                    3.219981                 3.968902                 4.846874 
            English_Kent_GBR Scottish_Argyll_Bute_GBR                    Irish 
                    4.945167                 5.001966                 5.621490 
                 French_West                Icelandic 
                    5.707225                 6.288356
    Orcadian 22.05
    Icelandic 14.60
    Irish 11.30
    Cossack_Zaporozhe 7.60
    English_Kent_GBR 5.75
    Ukraine_PL 3.15
    Spanish_Castilla_la_Mancha_IBS 2.80
    Basque 2.70
    Lithuania 2.70
    scottish1 2.35
    scottish2 2.35
    english 2.00
    Ukraine 1.85
    French_West 1.50
    Avar 1.20
    IT_South 1.20
    Ukraine_North 1.20
    Sweden 1.15
    Spanish_Valencia_IBS 0.95
    Tabassaran 0.80
    GreeceThessaly 0.75
    Kalash 0.70
    Polish1 0.70
    German 0.60
    Italian_North 0.60
    basque 0.55
    Latvian 0.50
    Piapoco 0.50
    Spanish_Castilla_y_Leon_IBS 0.50
    Serbian_B-H 0.45
    Spanish_Murcia_IBS 0.45
    Slovenian 0.40
    ceu 0.35
    Kosovo 0.35
    Surui 0.30
    Georgian_Laz 0.25
    Lezgin 0.25
    sardinian 0.25
    Scottish_Argyll_Bute_GBR 0.25
    Selkup 0.25
    Belarussian 0.15
    Slovakian 0.15
    Croat 0.10
    French_East 0.10
    Hungarian 0.10
    Igorot 0.10
    Ju_hoan_North 0.10
    Norwegian 0.10
    Spanish_Aragon_IBS 0.10
    Spanish_Pais_Vasco_IBS 0.10
    Austria 0.05
    Bosnian 0.05
    Canary_Islander 0.05
    Czech 0.05
    French_Northwest 0.05
    GreeceCentral 0.05
    IraqiJew 0.05
    Khomani 0.05
    Macedonian 0.05
    Mentawai 0.05
    Montenegro 0.05
    Muslim_Arab_Israel 0.05
    Serbia_Serbia 0.05
    Spanish_Andalucia_IBS 0.05
    Spanish_Cataluna_IBS 0.05


    Admix4

    Gaussian method.
    Code:
    Noise dispersion set to 0,33296
    
    Using 1 population approximation:
    1 Orcadian @ 2,725178
    2 English_Kent_GBR @ 3,057714
    3 Irish @ 3,446983
    4 CEU @ 3,704041
    5 Icelandic @ 3,84648
    6 French_West @ 3,87408
    7 German @ 4,091888
    8 Austria @ 4,422418
    9 Scottish_Argyll_Bute_GBR @ 4,437988
    10 Sweden @ 4,570549
    424 iterations.
    
    Using 2 populations approximation:
    1 Orcadian+Orcadian @ 2,725178
    2 English_Kent_GBR+Orcadian @ 2,784454
    3 English_Kent_GBR+Irish @ 2,925034
    4 German+Irish @ 2,985235
    5 Irish+Orcadian @ 2,988165
    6 English_Kent_GBR+English_Kent_GBR @ 3,057714
    7 German+Orcadian @ 3,089479
    8 Austria+Irish @ 3,097181
    9 Scottish1+Serbia_Serbia @ 3,107085
    10 Scottish2+Serbia_Serbia @ 3,107085
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Irish +25% Irish +25% Serbia_Serbia @ 2,301155
    2 50% Irish +25% Scottish1 +25% Serbia_Serbia @ 2,30693
    3 50% Irish +25% Scottish2 +25% Serbia_Serbia @ 2,30693
    4 50% Irish +25% Orcadian +25% Serbia_Serbia @ 2,451108
    5 50% Scottish1 +25% Irish +25% Serbia_Serbia @ 2,47493
    6 50% Scottish2 +25% Irish +25% Serbia_Serbia @ 2,47493
    7 50% Irish +25% english +25% Serbia_Serbia @ 2,507114
    8 50% Irish +25% English_Kent_GBR +25% Serbia_Serbia @ 2,533014
    9 50% Orcadian +25% Scottish1 +25% Serbia_Serbia @ 2,545557
    10 50% Orcadian +25% Scottish2 +25% Serbia_Serb
    Least-squares method.
    Code:
    Using 1 population approximation:
    1 CEU @ 3,030201
    2 Orcadian @ 3,725862
    3 Austria @ 4,620136
    4 English_Kent_GBR @ 4,763348
    5 Scottish_Argyll_Bute_GBR @ 4,868079
    6 Irish @ 5,338091
    7 French_West @ 5,558362
    8 Icelandic @ 6,004804
    9 German @ 6,74093
    10 Norwegian2 @ 7,873582
    424 iterations.
    
    Using 2 populations approximation:
    1 Hungarian+Scottish1 @ 1,640342
    2 Hungarian+Scottish2 @ 1,640342
    3 Croat+Scottish1 @ 1,916192
    4 Croat+Scottish2 @ 1,916192
    5 english+Hungarian @ 2,09203
    6 Scottish1+Slovenian @ 2,114075
    7 Scottish2+Slovenian @ 2,114075
    8 Scottish1+Serbian_B-H @ 2,339579
    9 Scottish2+Serbian_B-H @ 2,339579
    10 Bosnian+Scottish1 @ 2,615863
    90100 iterations.
    
    Using 3 populations approximation:
    1 50% Scottish_Argyll_Bute_GBR +25% Orcadian +25% Serbia_Serbia @ 1,048985
    2 50% Orcadian +25% Scottish_Argyll_Bute_GBR +25% Serbia_Serbia @ 1,08499
    3 50% Scottish_Argyll_Bute_GBR +25% Scottish_Argyll_Bute_GBR +25% Serbia_Serbia @ 1,124073
    4 50% Orcadian +25% Bosnian +25% Scottish_Argyll_Bute_GBR @ 1,18055
    5 50% Orcadian +25% Norwegian2 +25% Serbian_Serbia @ 1,187137
    6 50% Scottish_Argyll_Bute_GBR +25% Bosnian +25% Orcadian @ 1,202965
    7 50% Orcadian +25% Orcadian +25% Serbia_Serbia @ 1,222309
    8 50% Norwegian2 +25% Macedonian +25% Orcadian @ 1,22616
    9 50% Orcadian +25% Scottish_Argyll_Bute_GBR +25% Serbian_B-H @ 1,226273
    10 50% Orcadian +25% Orcadian +25% Serbian_B-H @ 1,233416
    9682737 iterations.
    
    Using 4 populations approximation:
    1 Orcadian+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,048985
    2 Orcadian+Orcadian+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,08499
    3 Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbia_Serbia @ 1,124073
    4 Bosnian+Orcadian+Orcadian+Scottish_Argyll_Bute_GBR @ 1,18055
    5 Norwegian2+Orcadian+Orcadian+Serbian_Serbia @ 1,187137
    6 Bosnian+Orcadian+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR @ 1,202965
    7 Orcadian+Orcadian+Orcadian+Serbia_Serbia @ 1,222309
    8 Macedonian+Norwegian2+Norwegian2+Orcadian @ 1,22616
    9 Orcadian+Orcadian+Scottish_Argyll_Bute_GBR+Serbian_B-H @ 1,226273
    10 Orcadian+Orcadian+Orcadian+Serbian_B-H @ 1,233416
    11 Cossack_Zaporozhe+French_East+Scottish_Argyll_Bute_GBR+Scottish1 @ 1,241505
    12 Cossack_Zaporozhe+French_East+Scottish_Argyll_Bute_GBR+Scottish2 @ 1,241505
    13 Bosnian+Orcadian+Orcadian+Orcadian @ 1,25709
    14 Bulgarian+Icelandic+Norwegian2+Norwegian2 @ 1,257712
    15 Icelandic+Montenegro+Norwegian2+Orcadian @ 1,259745
    16 Cossack_Zaporozhe+French_East+Orcadian+Scottish1 @ 1,263855
    17 Cossack_Zaporozhe+French_East+Orcadian+Scottish2 @ 1,263855
    18 Cossack_Zaporozhe+French_Northwest+Scottish_Argyll_Bute_GBR+Scottish1 @ 1,273265
    19 Cossack_Zaporozhe+French_Northwest+Scottish_Argyll_Bute_GBR+Scottish2 @ 1,273265
    20 Icelandic+Scottish_Argyll_Bute_GBR+Scottish_Argyll_Bute_GBR+Serbian_Serbia @ 1,27508
    30355730 iterations.

    Any explanation for the high number of Central/Eastern/SouthEastern results ? I've not had this to anything like the same extent in other calculators.
    Please support Mental health research and world community grid

    Hidden Content
    Hidden Content
    Hidden Content
    Hidden Content

Page 1 of 27 12311 ... LastLast

Similar Threads

  1. New K12 Ancient Calculator
    By Kurd in forum Ancient (aDNA)
    Replies: 1134
    Last Post: 08-31-2018, 01:54 PM
  2. My first own ADMIXTURE calculator - K4 World test:)
    By lukaszM in forum Autosomal (auDNA)
    Replies: 35
    Last Post: 11-26-2017, 01:10 AM
  3. Another new calculator - K12 World (beta test)
    By lukaszM in forum Autosomal (auDNA)
    Replies: 119
    Last Post: 11-23-2017, 10:22 PM
  4. Which is best calculator to determine your WHG %?
    By The Illyrian Warrior in forum Autosomal (auDNA)
    Replies: 3
    Last Post: 06-27-2017, 10:17 AM
  5. How To Use This Y-DNA STR Calculator
    By J Man in forum Other
    Replies: 0
    Last Post: 12-15-2016, 02:24 AM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •