Page 1 of 2 12 LastLast
Results 1 to 10 of 16

Thread: Ghost Generated HarappaWorld Results

  1. #1

    Ghost Generated HarappaWorld Results

    Hi Guys,

    As requested by @khanabadoshi I have made a new thread here. I have made a simple Python function that generates HarappaWorld scores based on existing data for a given population. Right now the function takes in a nested array, e.g. [[HighestSI, LowestSI], [HighestBaloch, LowestBaloch]....]. I do this for each component in HarappaWorld. Inside the function I then create a for loop that starts from 0 till 5000 for e.g and randomly generate scores like SI, Baloch for each Ghost. Then I add these scores up to make sure that they are greater than 99 and less than 100.

    Code:
    def genDataset(data):
        print(data)
        count = 0
        totalAvg = 0
        for i in range(5000):
            sIndian = round(random.uniform(data[0][0], data[0][1]), 2)
            baloch = round(random.uniform(data[1][0], data[1][1]), 2)
            caucasian = round(random.uniform(data[2][0], data[2][1]), 2)
            ne_euro = round(random.uniform(data[3][0], data[3][1]), 2)
            se_asian = round(random.uniform(data[4][0], data[4][1]), 2)
            siberian = round(random.uniform(data[5][0], data[5][1]), 2)
            ne_asian = round(random.uniform(data[6][0], data[6][1]), 2)
            papauan = round(random.uniform(data[7][0], data[7][1]), 2)
            american = round(random.uniform(data[8][0], data[8][1]), 2)
            beringian = round(random.uniform(data[9][0], data[9][1]), 2)
            medi = round(random.uniform(data[10][0], data[10][1]), 2)
            sw_asian = round(random.uniform(data[11][0], data[11][1]), 2)
            san = round(random.uniform(data[12][0], data[12][1]), 2)
            e_african = round(random.uniform(data[13][0], data[13][1]), 2)
            pygmy = round(random.uniform(data[14][0], data[14][1]), 2)
            w_african = round(random.uniform(data[15][0], data[15][1]), 2)
            
            total = sIndian + baloch + caucasian + ne_euro + se_asian + siberian + ne_asian + papauan + american + beringian + medi + sw_asian + san + e_african + pygmy + w_african
            
            if (total >= 99.98 and total <= 100.0):
                print(sIndian, baloch, caucasian , ne_euro , se_asian , siberian , ne_asian , papauan , american , beringian , medi , sw_asian , san , e_african , pygmy , w_african)
                totalAvg += total
                count += 1
            
        print(round(totalAvg/count, 2))
        print(count)
        
    sample_data = [[29.83, 33.17],[37.66, 45.20],[9.34, 14.99],[5.77, 10.84],[0, 0.83],[0, 1.73],[0, 1.80],[0, 0.91],[0, 1.57],[0, 1.52],[0, 1.42],[0, 2.93],[0, 0.39],[0, 0.28],[0, 0.57],[0, 0.35]]
    Please bear in mind this was just a mockup and can be greatly improved.

    Example Ghosts:

    Group S Indian Baloch Caucasian NE Euro SE Asian Siberian NE Asian Papuan American Beringian Mediterranean SW Asian San E African Pygmy W African
    GUJJAR_GEN 30.82 45.16 9.52 7.02 0.06 0.16 1.53 0.19 1.34 0.75 1.3 1.17 0.36 0.01 0.41 0.19
    GUJJAR_GEN 30.12 42.72 9.86 9.0 0.55 1.71 1.6 0.69 0.03 0.52 0.01 1.87 0.36 0.28 0.5 0.18
    GUJJAR_GEN 31.3 39.37 12.64 8.42 0.78 0.94 0.54 0.02 1.13 0.97 0.67 2.32 0.28 0.01 0.41 0.18
    GUJJAR_GEN 30.0 38.37 14.28 9.8 0.03 1.06 0.18 0.8 1.25 1.13 0.74 1.61 0.22 0.17 0.12 0.23
    GUJJAR_GEN 32.97 39.94 11.69 6.76 0.73 0.32 1.77 0.06 1.56 0.27 0.27 2.67 0.05 0.15 0.46 0.33
    GUJJAR_GEN 31.22 43.52 9.73 9.31 0.64 0.92 0.32 0.42 0.47 1.11 0.26 0.94 0.33 0.11 0.36 0.32
    GUJJAR_GEN 31.62 38.58 13.14 10.62 0.07 0.62 0.27 0.5 0.93 0.19 0.86 2.07 0.03 0.18 0.26 0.05
    GUJJAR_GEN 32.97 42.16 13.25 5.97 0.54 1.45 1.51 0.35 0.14 0.3 0.49 0.24 0.02 0.06 0.48 0.06
    GUJJAR_GEN 31.18 41.49 13.8 6.89 0.02 1.45 0.44 0.8 0.54 1.0 1.24 0.37 0.02 0.23 0.45 0.07
    GUJJAR_GEN 31.56 42.31 11.28 6.85 0.66 1.0 0.23 0.7 0.81 0.91 0.81 2.22 0.12 0.05 0.42 0.06
    GUJJAR_GEN 32.38 40.7 10.92 10.18 0.63 0.33 0.56 0.51 0.91 1.1 0.44 0.23 0.35 0.11 0.3 0.34

  2. The Following 15 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-02-2021),  Auro (10-02-2021),  Coldmountains (10-02-2021),  desi (10-02-2021),  discreetmaverick (10-06-2021),  ESPLover4 (10-02-2021),  Kaazi (10-02-2021),  khanabadoshi (10-06-2021),  laltota (10-02-2021),  MonkeyDLuffy (10-02-2021),  parasar (10-02-2021),  Path2light21 (10-02-2021),  Sapporo (10-02-2021),  subzero85 (10-02-2021),  surasena (10-02-2021)

  3. #2
    Generated Chhetris as requested:

    Group S Indian Baloch Caucasian NE Euro SE Asian Siberian NE Asian Papuan American Beringian Mediterranean SW Asian San E African Pygmy W African
    CHEHTRI_GEN 33.52 25.18 5.5 7.89 2.09 2.18 18.78 0.61 0.79 0.68 0.2 1.8 0.49 0.0 0.16 0.11
    CHEHTRI_GEN 34.02 25.24 5.07 8.1 1.3 2.88 18.93 0.51 1.8 0.83 0.05 0.81 0.42 0.0 0.03 0.01
    CHEHTRI_GEN 31.3 24.93 5.85 7.17 1.12 4.76 20.05 0.56 1.6 1.05 1.29 0.08 0.04 0.0 0.13 0.06
    CHEHTRI_GEN 31.7 28.28 4.01 7.86 0.37 3.57 21.34 0.66 1.19 0.16 0.08 0.31 0.4 0.0 0.06 0.0
    CHEHTRI_GEN 34.15 24.33 5.62 10.32 1.14 1.99 18.81 0.13 0.12 1.76 0.43 0.94 0.14 0.0 0.02 0.1
    CHEHTRI_GEN 34.31 24.75 5.7 9.52 0.07 2.79 19.24 0.2 0.15 0.16 1.41 1.16 0.37 0.0 0.12 0.04
    CHEHTRI_GEN 34.96 25.43 5.59 7.98 0.14 3.97 18.53 0.63 0.05 0.49 1.48 0.24 0.38 0.0 0.04 0.09
    CHEHTRI_GEN 31.28 25.83 4.67 7.16 0.27 4.22 21.21 0.59 0.25 1.03 1.6 1.47 0.27 0.0 0.11 0.04
    CHEHTRI_GEN 34.91 23.97 5.02 8.2 0.09 4.68 20.82 0.24 0.96 0.25 0.21 0.18 0.2 0.0 0.17 0.09
    CHEHTRI_GEN 33.08 24.19 3.59 9.02 1.47 3.76 19.86 0.44 1.56 0.98 0.89 0.87 0.16 0.0 0.1 0.02
    CHEHTRI_GEN 31.47 28.72 5.46 6.72 1.56 2.89 20.25 0.33 0.11 0.05 0.36 1.45 0.42 0.0 0.15 0.06
    CHEHTRI_GEN 32.46 27.56 4.59 8.49 0.52 2.03 20.97 0.19 0.43 0.65 1.67 0.26 0.03 0.0 0.04 0.1

  4. The Following 8 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-02-2021),  Auro (10-02-2021),  Coldmountains (10-02-2021),  ESPLover4 (10-02-2021),  Kaazi (10-02-2021),  MonkeyDLuffy (10-02-2021),  parasar (10-02-2021),  Sapporo (10-02-2021)

  5. #3

  6. The Following 6 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-02-2021),  Auro (10-02-2021),  ESPLover4 (10-02-2021),  khanabadoshi (10-06-2021),  MonkeyDLuffy (10-02-2021),  subzero85 (10-02-2021)

  7. #4
    Registered Users
    Posts
    804
    Sex
    Location
    Nepal

    Quote Originally Posted by geneticsikiru View Post
    Generated Chhetris as requested:

    Group S Indian Baloch Caucasian NE Euro SE Asian Siberian NE Asian Papuan American Beringian Mediterranean SW Asian San E African Pygmy W African
    CHEHTRI_GEN 33.52 25.18 5.5 7.89 2.09 2.18 18.78 0.61 0.79 0.68 0.2 1.8 0.49 0.0 0.16 0.11
    CHEHTRI_GEN 34.02 25.24 5.07 8.1 1.3 2.88 18.93 0.51 1.8 0.83 0.05 0.81 0.42 0.0 0.03 0.01
    CHEHTRI_GEN 31.3 24.93 5.85 7.17 1.12 4.76 20.05 0.56 1.6 1.05 1.29 0.08 0.04 0.0 0.13 0.06
    CHEHTRI_GEN 31.7 28.28 4.01 7.86 0.37 3.57 21.34 0.66 1.19 0.16 0.08 0.31 0.4 0.0 0.06 0.0
    CHEHTRI_GEN 34.15 24.33 5.62 10.32 1.14 1.99 18.81 0.13 0.12 1.76 0.43 0.94 0.14 0.0 0.02 0.1
    CHEHTRI_GEN 34.31 24.75 5.7 9.52 0.07 2.79 19.24 0.2 0.15 0.16 1.41 1.16 0.37 0.0 0.12 0.04
    CHEHTRI_GEN 34.96 25.43 5.59 7.98 0.14 3.97 18.53 0.63 0.05 0.49 1.48 0.24 0.38 0.0 0.04 0.09
    CHEHTRI_GEN 31.28 25.83 4.67 7.16 0.27 4.22 21.21 0.59 0.25 1.03 1.6 1.47 0.27 0.0 0.11 0.04
    CHEHTRI_GEN 34.91 23.97 5.02 8.2 0.09 4.68 20.82 0.24 0.96 0.25 0.21 0.18 0.2 0.0 0.17 0.09
    CHEHTRI_GEN 33.08 24.19 3.59 9.02 1.47 3.76 19.86 0.44 1.56 0.98 0.89 0.87 0.16 0.0 0.1 0.02
    CHEHTRI_GEN 31.47 28.72 5.46 6.72 1.56 2.89 20.25 0.33 0.11 0.05 0.36 1.45 0.42 0.0 0.15 0.06
    CHEHTRI_GEN 32.46 27.56 4.59 8.49 0.52 2.03 20.97 0.19 0.43 0.65 1.67 0.26 0.03 0.0 0.04 0.1
    Looks very natural. They're getting consistent SW Asian component which is rare and not realistic. But other scores are very good.

    All Chhetri samples range between 30-33 SI except 1 and here most are skewed towards upper limit 35 SI, so will you reduce the upper limit to 34 SI.

    Quote Originally Posted by geneticsikiru View Post
    If I could edit, I would try for furthermore lower NE-Euro and higher Caucasian range.
    Last edited by Kaazi; 10-02-2021 at 03:22 PM.

  8. The Following User Says Thank You to Kaazi For This Useful Post:

     geneticsikiru (10-02-2021)

  9. #5
    Quote Originally Posted by Kaazi View Post
    Looks very natural. They're getting consistent SW Asian component which is rare and not realistic. But other scores are fine.

    All Chhetri samples range between 30-33 SI except 1 and here most are skewed towards upper limit 35 SI, so will you reduce the upper limit to 34 SI.



    If I could edit, I would try for furthermore lower NE-Euro and higher Caucasian range.

    Just paste the code into here, then you should be able to edit and run: https://www.programiz.com/python-pro...line-compiler/

  10. The Following User Says Thank You to geneticsikiru For This Useful Post:

     Kaazi (10-02-2021)

  11. #6
    My plan was to make it completely dynamic, so you can create ghosts for any calculator. As of now it is tied in with HarappaWorld. Also regarding @khanabadoshi's mystery ancestor, I was thinking to also make a function that will create mixed ghosts for e.g. 1/2 Gujjar, 1/2 Bahun or 1/3 Gujjar, 1/3 Bahun, 1/3 Kalash and see what the results look like.

  12. The Following 7 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-03-2021),  ESPLover4 (10-03-2021),  Kaazi (10-02-2021),  karnalIroh (10-12-2021),  khanabadoshi (10-06-2021),  parasar (10-02-2021),  Sapporo (10-03-2021)

  13. #7
    Hi Guys,

    I have made some improvements on the previous function. Now it is completely dynamic and can be used for any admixture calculator and I also tried to make it more user friendly. Next I will look into making mixed ghosts. If you guys want I can maybe host it on the web and make a simple UI for it as well, so you can play around with it.

    Code:
    import random
    
    
    def genDataset(popName, components, data):
        if(len(components) != len(data)):
            print('Components and Sample Data Must Match!')
            return False
        count = 0
        totalAvg = 0
        columns = [str(el).upper() for el in components]
        print('GROUP'+ ' ' +','.join(columns).replace(',', ' '))
        for i in range(5000):
            ghost = []
            for i in range(0, len(components)):
                placeholder = round(random.uniform(data[i][0], data[i][1]), 2)
                ghost.append(placeholder)
    
    
            total = sum(ghost)
            if (total >= 99.98 and total <= 100.0):
                toString = [str(comp) for comp in ghost]
                print((popName + '_GEN_' + str(count)).upper() + ' ' + ' '.join(toString))
                totalAvg += total
                count += 1
        
        print('\nTotal Average for Each ' + popName + ' ' + str(round(totalAvg/count, 2)))
        print('\nGenerated ' + str(count) + ' Results')
        print('Please copy results into LibreOffice Spreadsheet or Excel')
        
    
    
    # Define Components Here
    # No Spaces in Component Names, use - !
    components = ['South-Indian', 'Baloch', 'Caucasian', 'NE-Euro', 'SE-Asian', 'Siberian', 'NE-Asian', 'Papauan', 'American', 'Beringian', 'Med', 'SW-Asian', 'San', 'East-African', 'Pygmy', 'West-African']
    
    
    # Add Low and High Values for Each Component
    # Must Match Component Arr !
    data = [[30.19, 35.37],[23.59, 29.14],[3.55, 6.87],[6.31, 10.53],[0, 3.67],[1.86, 4.88],[18.51, 21.53],[0, 1.22],[0, 1.93],[0.05, 1.78],[0, 2.04],[0, 2.18],[0, 0.53],[0, 0.0],[0, 0.18],[0, 0.13]]
        
    genDataset('Chehtri', components, data)
    Last edited by geneticsikiru; 10-03-2021 at 07:31 AM.

  14. The Following 5 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-03-2021),  ESPLover4 (10-03-2021),  khanabadoshi (10-06-2021),  Kirtan24 (10-03-2021),  Sapporo (10-03-2021)

  15. #8
    Ok guys I have now manage to add mixed mode to the ghost generator . Now we can make any mix ghost we want, there should not be any limitations.

    New code here:

    Code:
    import random
    
    
    def genDataset(popName, components, data, mode):
        if(len(components) != len(data) and mode == 'single'):
            print('Components and Sample Data Must Match!')
            return False
        elif mode == 'mixed' and len(components) == len(data):
            print('Error')
            return False
        count = 0
        totalAvg = 0
        columns = [str(el).upper() for el in components]
        print('GROUP'+ ' ' +','.join(columns).replace(',', ' '))
        for i in range(5000):
            ghost = []
            for i in range(0, len(components)):
                if mode == 'single':
                    placeholder = round(random.uniform(data[i][0], data[i][1]), 2)
                    ghost.append(placeholder)
                else:
                    mixedArr = []
                    for h in range(0, len(data)):
                        placeholder = round(random.uniform(data[h][i][0], data[h][i][1]), 2)
                        mixedArr.append(placeholder)
                        if(len(mixedArr) == len(data)):
                            placeholder = round(sum(mixedArr) / len(mixedArr), 2)
                            ghost.append(placeholder)
    
    
            total = sum(ghost)
            if (total >= 99.98 and total <= 100.0):
                toString = [str(comp) for comp in ghost]
                print((popName + '_GEN_' + str(count)).upper() + ' ' + ' '.join(toString))
                totalAvg += total
                count += 1
        
        print('\nTotal Average for Each ' + popName + ' ' + str(round(totalAvg/count, 2)))
        print('\nGenerated ' + str(count) + ' Results')
        print('\nPlease copy results into LibreOffice Spreadsheet or Excel')
        
    
    
    # Define Components Here
    # No Spaces in Component Names, use - !
    components = ['South-Indian', 'Baloch', 'Caucasian', 'NE-Euro', 'SE-Asian', 'Siberian', 'NE-Asian', 'Papauan', 'American', 'Beringian', 'Med', 'SW-Asian', 'San', 'East-African', 'Pygmy', 'West-African']
    
    
    # Add Low and High Values for Each Component
    # Must Match Component Arr !
    data = [[30.19, 35.37],[23.59, 29.14],[3.55, 6.87],[6.31, 10.53],[0, 3.67],[1.86, 4.88],[18.51, 21.53],[0, 1.22],[0, 1.93],[0.05, 1.78],[0, 2.04],[0, 2.18],[0, 0.53],[0, 0.0],[0, 0.18],[0, 0.13]]
    
    
    sample_data = [[29.83, 33.17],[37.66, 45.20],[9.34, 14.99],[5.77, 10.84],[0, 0.83],[0, 1.73],[0, 1.80],[0, 0.91],[0, 1.57],[0, 1.52],[0, 1.42],[0, 2.93],[0, 0.39],[0, 0.28],[0, 0.57],[0, 0.35]]
    
    
    mixedData = [data, sample_data]
        
    genDataset('GujarChehtri', components, mixedData, 'mixed')


    Sample mixed Gujjar and Chehtris:


    GROUP SOUTH-INDIAN BALOCH CAUCASIAN NE-EURO SE-ASIAN SIBERIAN NE-ASIAN PAPAUAN AMERICAN BERINGIAN MED SW-ASIAN SAN EAST-AFRICAN PYGMY WEST-AFRICAN
    GUJARCHEHTRI_GEN_0 31.94 33.5 9.94 7.55 0.3 2.14 10.37 0.3 0.63 0.84 0.56 1.22 0.23 0.13 0.28 0.07
    GUJARCHEHTRI_GEN_1 31.82 32.61 8.54 7.88 1.39 1.75 10.74 0.13 0.9 1.28 1.07 1.26 0.12 0.01 0.28 0.2
    GUJARCHEHTRI_GEN_2 32.08 35.22 7.98 8.82 0.47 1.62 9.35 0.56 0.93 0.31 1.17 0.66 0.32 0.07 0.26 0.18
    GUJARCHEHTRI_GEN_3 30.38 34.92 10.13 6.68 1.13 1.27 10.58 0.28 1.03 0.49 1.09 1.31 0.32 0.01 0.28 0.1
    GUJARCHEHTRI_GEN_4 30.55 32.58 10.1 9.06 1.29 1.96 11.27 0.26 1.02 0.2 0.12 0.77 0.22 0.12 0.32 0.16
    GUJARCHEHTRI_GEN_5 33.25 33.0 7.04 7.92 1.85 2.38 9.99 0.23 0.24 1.46 0.57 1.48 0.24 0.04 0.23 0.07
    GUJARCHEHTRI_GEN_6 32.62 32.31 8.14 8.12 1.96 2.42 9.81 0.06 1.44 0.41 1.04 1.07 0.23 0.09 0.17 0.1
    GUJARCHEHTRI_GEN_7 31.69 33.16 7.41 7.75 1.6 1.83 10.36 0.77 0.91 1.61 0.44 1.58 0.37 0.06 0.35 0.1
    GUJARCHEHTRI_GEN_8 31.41 33.89 9.04 8.77 1.35 1.25 9.87 0.65 1.04 1.12 0.69 0.21 0.37 0.12 0.17 0.04
    GUJARCHEHTRI_GEN_9 32.97 32.75 7.64 8.75 1.34 1.85 10.73 0.15 0.53 0.06 0.84 1.9 0.29 0.1 0.04 0.04
    GUJARCHEHTRI_GEN_10 31.84 31.41 9.89 8.37 1.12 2.19 10.25 0.33 0.08 1.23 0.68 2.03 0.23 0.07 0.21 0.05
    GUJARCHEHTRI_GEN_11 31.77 33.9 10.62 6.96 0.33 2.2 10.35 0.25 0.51 0.82 1.37 0.66 0.05 0.03 0.03 0.15
    GUJARCHEHTRI_GEN_12 32.45 32.39 9.31 7.72 0.69 1.66 10.19 0.9 1.08 0.39 1.21 1.63 0.08 0.01 0.06 0.23
    GUJARCHEHTRI_GEN_13 30.73 32.73 10.13 6.63 0.98 2.21 10.62 0.54 1.03 0.79 1.58 1.25 0.3 0.06 0.26 0.15
    GUJARCHEHTRI_GEN_14 31.84 33.97 9.34 7.59 0.58 2.42 9.77 0.69 0.91 0.55 0.29 1.21 0.39 0.1 0.18 0.16
    GUJARCHEHTRI_GEN_15 31.89 32.27 8.95 8.55 1.49 1.34 10.94 0.22 1.0 0.72 0.89 1.09 0.19 0.1 0.17 0.18

  16. The Following 6 Users Say Thank You to geneticsikiru For This Useful Post:

     AlluGobi (10-03-2021),  Auro (10-03-2021),  Kaazi (10-03-2021),  khanabadoshi (10-06-2021),  MonkeyDLuffy (10-03-2021),  Sapporo (10-04-2021)

  17. #9
    Registered Users
    Posts
    71
    Sex

    Quote Originally Posted by geneticsikiru View Post
    Ok guys I have now manage to add mixed mode to the ghost generator . Now we can make any mix ghost we want, there should not be any limitations.

    New code here:

    Code:
    import random
    
    
    def genDataset(popName, components, data, mode):
        if(len(components) != len(data) and mode == 'single'):
            print('Components and Sample Data Must Match!')
            return False
        elif mode == 'mixed' and len(components) == len(data):
            print('Error')
            return False
        count = 0
        totalAvg = 0
        columns = [str(el).upper() for el in components]
        print('GROUP'+ ' ' +','.join(columns).replace(',', ' '))
        for i in range(5000):
            ghost = []
            for i in range(0, len(components)):
                if mode == 'single':
                    placeholder = round(random.uniform(data[i][0], data[i][1]), 2)
                    ghost.append(placeholder)
                else:
                    mixedArr = []
                    for h in range(0, len(data)):
                        placeholder = round(random.uniform(data[h][i][0], data[h][i][1]), 2)
                        mixedArr.append(placeholder)
                        if(len(mixedArr) == len(data)):
                            placeholder = round(sum(mixedArr) / len(mixedArr), 2)
                            ghost.append(placeholder)
    
    
            total = sum(ghost)
            if (total >= 99.98 and total <= 100.0):
                toString = [str(comp) for comp in ghost]
                print((popName + '_GEN_' + str(count)).upper() + ' ' + ' '.join(toString))
                totalAvg += total
                count += 1
        
        print('\nTotal Average for Each ' + popName + ' ' + str(round(totalAvg/count, 2)))
        print('\nGenerated ' + str(count) + ' Results')
        print('\nPlease copy results into LibreOffice Spreadsheet or Excel')
        
    
    
    # Define Components Here
    # No Spaces in Component Names, use - !
    components = ['South-Indian', 'Baloch', 'Caucasian', 'NE-Euro', 'SE-Asian', 'Siberian', 'NE-Asian', 'Papauan', 'American', 'Beringian', 'Med', 'SW-Asian', 'San', 'East-African', 'Pygmy', 'West-African']
    
    
    # Add Low and High Values for Each Component
    # Must Match Component Arr !
    data = [[30.19, 35.37],[23.59, 29.14],[3.55, 6.87],[6.31, 10.53],[0, 3.67],[1.86, 4.88],[18.51, 21.53],[0, 1.22],[0, 1.93],[0.05, 1.78],[0, 2.04],[0, 2.18],[0, 0.53],[0, 0.0],[0, 0.18],[0, 0.13]]
    
    
    sample_data = [[29.83, 33.17],[37.66, 45.20],[9.34, 14.99],[5.77, 10.84],[0, 0.83],[0, 1.73],[0, 1.80],[0, 0.91],[0, 1.57],[0, 1.52],[0, 1.42],[0, 2.93],[0, 0.39],[0, 0.28],[0, 0.57],[0, 0.35]]
    
    
    mixedData = [data, sample_data]
        
    genDataset('GujarChehtri', components, mixedData, 'mixed')


    Sample mixed Gujjar and Chehtris:


    GROUP SOUTH-INDIAN BALOCH CAUCASIAN NE-EURO SE-ASIAN SIBERIAN NE-ASIAN PAPAUAN AMERICAN BERINGIAN MED SW-ASIAN SAN EAST-AFRICAN PYGMY WEST-AFRICAN
    GUJARCHEHTRI_GEN_0 31.94 33.5 9.94 7.55 0.3 2.14 10.37 0.3 0.63 0.84 0.56 1.22 0.23 0.13 0.28 0.07
    GUJARCHEHTRI_GEN_1 31.82 32.61 8.54 7.88 1.39 1.75 10.74 0.13 0.9 1.28 1.07 1.26 0.12 0.01 0.28 0.2
    GUJARCHEHTRI_GEN_2 32.08 35.22 7.98 8.82 0.47 1.62 9.35 0.56 0.93 0.31 1.17 0.66 0.32 0.07 0.26 0.18
    GUJARCHEHTRI_GEN_3 30.38 34.92 10.13 6.68 1.13 1.27 10.58 0.28 1.03 0.49 1.09 1.31 0.32 0.01 0.28 0.1
    GUJARCHEHTRI_GEN_4 30.55 32.58 10.1 9.06 1.29 1.96 11.27 0.26 1.02 0.2 0.12 0.77 0.22 0.12 0.32 0.16
    GUJARCHEHTRI_GEN_5 33.25 33.0 7.04 7.92 1.85 2.38 9.99 0.23 0.24 1.46 0.57 1.48 0.24 0.04 0.23 0.07
    GUJARCHEHTRI_GEN_6 32.62 32.31 8.14 8.12 1.96 2.42 9.81 0.06 1.44 0.41 1.04 1.07 0.23 0.09 0.17 0.1
    GUJARCHEHTRI_GEN_7 31.69 33.16 7.41 7.75 1.6 1.83 10.36 0.77 0.91 1.61 0.44 1.58 0.37 0.06 0.35 0.1
    GUJARCHEHTRI_GEN_8 31.41 33.89 9.04 8.77 1.35 1.25 9.87 0.65 1.04 1.12 0.69 0.21 0.37 0.12 0.17 0.04
    GUJARCHEHTRI_GEN_9 32.97 32.75 7.64 8.75 1.34 1.85 10.73 0.15 0.53 0.06 0.84 1.9 0.29 0.1 0.04 0.04
    GUJARCHEHTRI_GEN_10 31.84 31.41 9.89 8.37 1.12 2.19 10.25 0.33 0.08 1.23 0.68 2.03 0.23 0.07 0.21 0.05
    GUJARCHEHTRI_GEN_11 31.77 33.9 10.62 6.96 0.33 2.2 10.35 0.25 0.51 0.82 1.37 0.66 0.05 0.03 0.03 0.15
    GUJARCHEHTRI_GEN_12 32.45 32.39 9.31 7.72 0.69 1.66 10.19 0.9 1.08 0.39 1.21 1.63 0.08 0.01 0.06 0.23
    GUJARCHEHTRI_GEN_13 30.73 32.73 10.13 6.63 0.98 2.21 10.62 0.54 1.03 0.79 1.58 1.25 0.3 0.06 0.26 0.15
    GUJARCHEHTRI_GEN_14 31.84 33.97 9.34 7.59 0.58 2.42 9.77 0.69 0.91 0.55 0.29 1.21 0.39 0.1 0.18 0.16
    GUJARCHEHTRI_GEN_15 31.89 32.27 8.95 8.55 1.49 1.34 10.94 0.22 1.0 0.72 0.89 1.09 0.19 0.1 0.17 0.18
    Can you do one for south indian brahmins.

  18. The Following User Says Thank You to iyer For This Useful Post:

     geneticsikiru (10-06-2021)

  19. #10
    Quote Originally Posted by iyer View Post
    Can you do one for south indian brahmins.
    you want to gen ghost South Indian brahmins ? we need an existing dataset for that.

  20. The Following User Says Thank You to geneticsikiru For This Useful Post:

     parasar (10-04-2021)

Page 1 of 2 12 LastLast

Similar Threads

  1. some HarappaWorld Arabian results
    By IronHorse in forum Autosomal (auDNA)
    Replies: 70
    Last Post: 02-14-2021, 04:58 PM
  2. Harappaworld results for Gangetic plains
    By Censored in forum Southern
    Replies: 247
    Last Post: 04-02-2020, 05:50 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •