Page 37 of 41 FirstFirst ... 273536373839 ... LastLast
Results 361 to 370 of 407

Thread: nMonte3: Iron Age for NW/W Europe

  1. #361
    Registered Users
    Posts
    5,058
    Sex
    Location
    Eastern North America
    Ethnicity
    80% Brit/Irish, 19% N Eur
    Nationality
    AMCIT
    aDNA Match (1st)
    I12771 Mid Iron Age Derbyshire England 0.0216
    aDNA Match (2nd)
    I0774 Anglo-Saxon Cambridge England 0.0221
    aDNA Match (3rd)
    VK364 Viking Age Langeland Denmark 0.0228
    Y-DNA (P)
    U152>L2>Z49>Z142>
    mtDNA (M)
    H1bt
    Y-DNA (M)
    I2a2a1b2a1b1>Y4925
    mtDNA (P)
    H37

    England Scotland Wales Germany Palatinate Ireland Leinster Sweden Finns
    Quote Originally Posted by MitchellSince1893 View Post
    Post 323 results. Again my pie chart is most like English_North and German_NW

     
    Target: Mitchell_scaled

    Target: Mitchell_scaled
    Distance: 0.9032% / 0.00903172
    44.0 West-Germanic
    42.6 Briton
    6.4 Gallic
    6.4 SlavicEU_MA_Krakauer_Berg
    0.6 Nordic


    Target: Mitchell_scaled
    Distance: 0.9032% / 0.00903184
    Target: Mitchell_scaled
    Distance: 0.9837% / 0.00983653 | ADC: 0.5x RC
    29.8 Briton:I14107
    12.6 West-Germanic:STR_486
    10.4 West-Germanic:I0157
    9.8 Briton:I5508
    8.6 West-Germanic:SZ15
    8.4 Briton:I13727293
    8.2 Nordic:VK507
    7.2 West-Germanic:SZ11
    5.0 Briton:I14104


    Distance: 0.9032% / 0.00903172
    24.6 Briton:I14107
    23.2 West-Germanic:I0157
    13.6 West-Germanic:SZ15
    7.6 Briton:I14104
    7.2 West-Germanic:STR_486
    6.4 Gallic:I21931
    6.4 SlavicEU_MA_Krakauer_Berg:KRA010
    3.8 Briton:I22055
    3.8 Briton:I11156279
    1.6 Briton:I5508
    1.2 Briton:I5509
    0.6 Nordic:VK495

    Target: Mitchell_scaled
    Distance: 0.9837% / 0.00983653 | ADC: 0.5x RC
    53.0 Briton
    38.8 West-Germanic
    8.2 Nordic

    Target: Mitchell_scaled
    Distance: 0.9837% / 0.00983653 | ADC: 0.5x RC
    29.8 Briton:I14107
    12.6 West-Germanic:STR_486
    10.4 West-Germanic:I0157
    9.8 Briton:I5508
    8.6 West-Germanic:SZ15
    8.4 Briton:I13727293
    8.2 Nordic:VK507
    7.2 West-Germanic:SZ11
    5.0 Briton:I14104

    I need to correct that. Actually 323 result makes me look more Scottish and to a lesser extent Southern English...areas that have almost and even split of 40 something percent for Briton & West-Germanic


    If you took the Scotland result and replaced the Nordic with SlavicEU and replaced Hispani with Gallic, Scotland would be a good fit for my result (my pie chart is in North Sea)



    Areas with some Gallic in Yellow, some SlavicEU in blue, and overlap in dark green.
    Last edited by MitchellSince1893; 06-23-2022 at 02:46 AM.
    Y DNA line continued: Z142>Z12222>FGC12378>FGC12401>FGC12384
    35% English, 15% Scottish, 14% Welsh, 14% German, 11% Ulster Scot, 5% Ireland, 3% Scandinavian, 2% French/Dutch, 1% India
    "Nemo est supra leges."

  2. The Following 5 Users Say Thank You to MitchellSince1893 For This Useful Post:

     jadegreg (06-23-2022),  JMcB (06-23-2022),  lehmannt (06-23-2022),  TOMESQ (06-23-2022),  Wâldpykjong (06-23-2022)

  3. #362
    Registered Users
    Posts
    1,066
    Sex
    Location
    Netherlands
    Ethnicity
    South-Dutch
    Nationality
    Dutch
    Y-DNA (P)
    I2a2a1b2-CTS1977
    mtDNA (M)
    H13a1a1

    Netherlands Belgium
    Quote Originally Posted by Telfermagne View Post
    Word just found this nugget: https://towardsdatascience.com/linea...d-f88be6c1e00b

    With the problem of number of samples to the side, in the following instance the definition of 'groups' are based upon their respective study, so they're independent of the LDA:

     
    Arras-Culture = East Yorkshire MIA_LIA from Large-scale migration into Britain during the Middle to Late Bronze Age (2021) n = 32:


    Salme-Ship-Burial = VK2020_EST_Saaremaa_EVA from Population genomics of the Viking world 2019 n = 34:


    Imperial Roman = ITA_Rome_Imperial from Ancient Rome: A genetic crossroads of Europe and the Mediterranean 2020 n = 48.


    In PAST when I use these guys Axis 1 seems to account for 83.59% of the variation, while Axis 2 seems to account for 16.41%. The error matrix shows 98.25% accuracy (jacknifed), all Salme Ship remains were correctly assigned, all Imperial Romans were correctly assigned, 32 out of 34 Arras remains were correctly assigned (2 were mistaken for Imperial Roman).

    So, within the context of a k=3 model these would be satisfactory?
    For several reasons I have my doubts.
    IMO your model is only valid within the condition that your three components East Yorkshire MIA_LIA, VK2020_EST_Saaremaa_EVA and ITA_Rome_Imperial really are the three separate components of the West-European submodern variation.
    If the first dimension accounts for 83.59% of the variation, my hunch is that your model is more or less one-dimensional.
    An accuracy of 98.25% appears incredible for a 2-dimensional model, especially with so few data.
    That all Salme samples are correctly assigned makes me really suspicious.
    As a sanity check I suggest that you fit a kmeans model with k = 2,3,4 on the aggregate of your 3 three groups.
    But even if the model is valid, I think that is missing too many admixtures to be representative for all West-Europeans.

  4. The Following 5 Users Say Thank You to Huijbregts For This Useful Post:

     Garimund (06-23-2022),  jadegreg (06-23-2022),  JMcB (06-23-2022),  lehmannt (06-23-2022),  Telfermagne (06-23-2022)

  5. #363
    Registered Users
    Posts
    698
    Sex
    Location
    Wolverhampton, England
    Ethnicity
    English, Welsh
    Nationality
    British
    aDNA Match (1st)
    England MIA (E. Yorkshire) I13753 0.0230
    aDNA Match (2nd)
    England MIA (Oxfordshire) I21180 0.0233
    aDNA Match (3rd)
    England MIA (Derbyshire) I12770 0.0236
    Y-DNA (P)
    R-DF98/ R-S1911*
    mtDNA (M)
    X2b4

    United Kingdom England Wales Devon Cornwall
    Quote Originally Posted by Huijbregts View Post
    For several reasons I have my doubts.
    IMO your model is only valid within the condition that your three components East Yorkshire MIA_LIA, VK2020_EST_Saaremaa_EVA and ITA_Rome_Imperial really are the three separate components of the West-European submodern variation.
    If the first dimension accounts for 83.59% of the variation, my hunch is that your model is more or less one-dimensional.
    An accuracy of 98.25% appears incredible for a 2-dimensional model, especially with so few data.
    That all Salme samples are correctly assigned makes me really suspicious.
    As a sanity check I suggest that you fit a kmeans model with k = 2,3,4 on the aggregate of your 3 three groups.
    But even if the model is valid, I think that is missing too many admixtures to be representative for all West-Europeans.
    When you previously referred to 'cherry picking', do you mean removal of samples to get clear separation of K, or groups within the model? This of course is a post hoc selection. Therefore, would it be acceptable to use a priori 'cherry picking'. For example, let's say we would like a 'Migration Period' group, that included Bauvarii, Allemanii, Longobards and Saxons. However, we know some samples are heavily admixed with a different populations. Would it be reasonable to exclude these hypothetically non-representative samples from your initial grouping for the 'Migration Period' group?

  6. The Following 4 Users Say Thank You to jadegreg For This Useful Post:

     Garimund (06-23-2022),  JMcB (06-23-2022),  lehmannt (06-23-2022),  Telfermagne (06-23-2022)

  7. #364
    Registered Users
    Posts
    702
    Sex
    Location
    UK
    Ethnicity
    British
    Nationality
    English
    Y-DNA (P)
    I-FGC28756 (L22)
    mtDNA (M)
    U5a1b4
    mtDNA (P)
    J1c8

    United Kingdom
    For post 323 it prefers to take away from West Germanic and make it a combination of Hispani, Slavic and Nordic instead, but the Briton is still quite similar. It's an odd mix compared to the previous one so not sure where it fits 'on the map'.

    Post 293:

    Distance: 1.5141% / 0.01514093
    54.4 Briton
    24.8 West-Germanic
    13.4 Gallic
    7.4 Nordic

    My mother scores a bit of Balto-Finnic in this one:

    Distance: 1.8765% / 0.01876547
    54.4 Briton
    25.0 West-Germanic
    19.0 Gallic
    1.6 Balto-Finnic

    Post 323:

    Distance: 1.3568% / 0.01356831
    60.4 Briton
    13.6 West-Germanic
    9.2 Hispani
    8.8 Slavic
    8.0 Nordic

    My mother scores quite a lot of Slavic:

    Distance: 1.6163% / 0.01616282
    65.0 Briton
    17.0 Slavic
    7.6 Hispani
    7.2 West-Germanic
    3.2 Gallic

  8. The Following 7 Users Say Thank You to Anglecynn For This Useful Post:

     Garimund (06-23-2022),  jadegreg (06-23-2022),  Jessie (06-24-2022),  JMcB (06-23-2022),  lehmannt (06-23-2022),  Telfermagne (06-23-2022),  Wâldpykjong (06-23-2022)

  9. #365
    Registered Users
    Posts
    1,066
    Sex
    Location
    Netherlands
    Ethnicity
    South-Dutch
    Nationality
    Dutch
    Y-DNA (P)
    I2a2a1b2-CTS1977
    mtDNA (M)
    H13a1a1

    Netherlands Belgium
    Quote Originally Posted by jadegreg View Post
    When you previously referred to 'cherry picking', do you mean removal of samples to get clear separation of K, or groups within the model? This of course is a post hoc selection. Therefore, would it be acceptable to use a priori 'cherry picking'. For example, let's say we would like a 'Migration Period' group, that included Bauvarii, Allemanii, Longobards and Saxons. However, we know some samples are heavily admixed with a different populations. Would it be reasonable to exclude these hypothetically non-representative samples from your initial grouping for the 'Migration Period' group?
    There is an ex-ante selection of groups to get a better separation between the groups. This results in an unnatural high accuracy of the results, which does not necessarily prove an extremely good fit of the model, but just a good separation of the (possibly erroneously estimated) groups.
    An ex-post selection of the groups would happen if you think: I am not quite pleased with the result, let's change the groups so as to get a better fit. This is of course a no go.
    In #354 Telfermagne used the term 'cherry picking' for the 100% accuracy he got when he used the option 'jacknifing' in his LDA. This is a technical question which a will not deal with here. But a 100% percent accurate estimate is of course very suspect.

    I think it is a bad idea to introduce a 'Migration Period' group. Indeed many samples are heavily admixed with a different population. Maybe you can think of them as cultural groups, but not as genetic groups. Many of these samples are more Asian than European. But the Saxons are not Asian.
    However, the Sarmatians plus Cimmerians are relatively homogenous.
    IMO excluding hypothetically non-fitting samples from an initial grouping for the 'Migration Period' group is clearly an ex-post change of the model, which is not admitted.
    I actually prepared a selected-LDA model with a Sarmatians_like group. Maybe you are interested.
    combi3.png

  10. The Following 5 Users Say Thank You to Huijbregts For This Useful Post:

     Garimund (06-23-2022),  jadegreg (06-23-2022),  JMcB (06-24-2022),  lehmannt (06-23-2022),  Telfermagne (06-23-2022)

  11. #366
    Registered Users
    Posts
    481
    Sex
    Location
    NE Ohio
    Nationality
    U.S. American
    Y-DNA (P)
    R-FT49882
    mtDNA (M)
    H3ap
    Y-DNA (M)
    R-Z255
    mtDNA (P)
    HV9a1

    United States of America
    Quote Originally Posted by Huijbregts View Post
    For several reasons I have my doubts.
    IMO your model is only valid within the condition that your three components East Yorkshire MIA_LIA, VK2020_EST_Saaremaa_EVA and ITA_Rome_Imperial really are the three separate components of the West-European submodern variation.
    If the first dimension accounts for 83.59% of the variation, my hunch is that your model is more or less one-dimensional.
    An accuracy of 98.25% appears incredible for a 2-dimensional model, especially with so few data.
    That all Salme samples are correctly assigned makes me really suspicious.
    As a sanity check I suggest that you fit a kmeans model with k = 2,3,4 on the aggregate of your 3 three groups.
    But even if the model is valid, I think that is missing too many admixtures to be representative for all West-Europeans.
    Schwifty, wish I had asked these questions a long long time ago

    When I do add more realistic groups the Salme accuracy does decrease, as does that for East Yorkshire MIA_LIA and the number of axis increase on the LDA readout (4 Axis instead of 2).

  12. The Following 5 Users Say Thank You to Telfermagne For This Useful Post:

     Garimund (06-23-2022),  jadegreg (06-23-2022),  JMcB (06-24-2022),  lehmannt (06-23-2022),  TOMESQ (06-23-2022)

  13. #367
    Registered Users
    Posts
    481
    Sex
    Location
    NE Ohio
    Nationality
    U.S. American
    Y-DNA (P)
    R-FT49882
    mtDNA (M)
    H3ap
    Y-DNA (M)
    R-Z255
    mtDNA (P)
    HV9a1

    United States of America
    Did a Kmeans for North-Central_Langobards n = 26, Imperial Romans n = 48, Britain Late Iron Age n = 34, and Gaul (Fench IA2 samples) n = 15. I used 'North-Central Langobards' because Understanding 6th-century barbarian social organization and migration through paleogenomics made a recurrent point to discern between them as a group of 'Northern ancestry' distinct from the other burials. As far as sample numbers, hands are kinda tied with what's in the dataset.

    The Kmeans CSV is in the spoiler tags. 4 clusters were proposed.

    Cluster 1 has n = 25: 12 were 'Gaul', 7 were 'North-Central Langobard', 4 were 'Britain Late Iron Age' and 2 were 'Imperial Roman'.
    Cluster 2 has n = 46: all 46 were 'Imperial Roman'.
    Cluster 3 has n = 23: 10 were 'North-Central Langobard', 9 were 'Britain Late Iron Age', and 3 were 'Gaul'.
    Cluster 4 has n = 29: 21 were 'Britain Late Iron Age' and 8 were 'North-Central Langobard'.

    If I'm interpreting correctly, then that means that there's no grounds to discern 'clusters' within this selection, at least in terms of Britain Late Iron Age, North-Central Langobard, and Gaul.

     
    Item,Cluster
    Imperial-Roman:RMPR116,1
    Imperial-Roman:RMPR37,1
    Britain_Late_Iron_Age:I18599,1
    Britain_Late_Iron_Age:I21302,1
    Britain_Late_Iron_Age:I21303,1
    Britain_Late_Iron_Age:I27379,1
    Gaul:Champagne_IA2:I19356,1
    Gaul:Champagne_IA2:I19357,1
    Gaul:Champagne_IA2:I19358,1
    Gaul:Champagne_IA2:I20815,1
    Gaul:Champagne_IA2:I20827,1
    Gaul:Champagne_IA2:I21399,1
    Gaul:Champagne_IA2:I21402,1
    Gaul:Champagne_IA2:I21931,1
    Gaul:Alsace_IA2:COL153A,1
    Gaul:Alsace_IA2:ERS1164,1
    Gaul:Alsace_IA2:ERS86,1
    Gaul:Hauts_De_France_IA2:BFM265,1
    Langobard:SZ1:SZ14,1
    Langobard:SZ1:SZ8,1
    Langobard:SZ_no_Kindred:SZ38,1
    Langobard:CL1_Kindred:CL87,1
    Langobard:SZ42,1
    Langobard:SZ23,1
    Langobard:CL63,1
    Imperial-Roman:RMPR111,2
    Imperial-Roman:RMPR113,2
    Imperial-Roman:RMPR114,2
    Imperial-Roman:RMPR115,2
    Imperial-Roman:RMPR123,2
    Imperial-Roman:RMPR125,2
    Imperial-Roman:RMPR126,2
    Imperial-Roman:RMPR128,2
    Imperial-Roman:RMPR131,2
    Imperial-Roman:RMPR132,2
    Imperial-Roman:RMPR1543,2
    Imperial-Roman:RMPR1544,2
    Imperial-Roman:RMPR1545,2
    Imperial-Roman:RMPR1547,2
    Imperial-Roman:RMPR1548,2
    Imperial-Roman:RMPR1549,2
    Imperial-Roman:RMPR1550,2
    Imperial-Roman:RMPR1551,2
    Imperial-Roman:RMPR38,2
    Imperial-Roman:RMPR39,2
    Imperial-Roman:RMPR40,2
    Imperial-Roman:RMPR41,2
    Imperial-Roman:RMPR42,2
    Imperial-Roman:RMPR43,2
    Imperial-Roman:RMPR436,2
    Imperial-Roman:RMPR44,2
    Imperial-Roman:RMPR45,2
    Imperial-Roman:RMPR47,2
    Imperial-Roman:RMPR49,2
    Imperial-Roman:RMPR50,2
    Imperial-Roman:RMPR51,2
    Imperial-Roman:RMPR66,2
    Imperial-Roman:RMPR67,2
    Imperial-Roman:RMPR68,2
    Imperial-Roman:RMPR69,2
    Imperial-Roman:RMPR70,2
    Imperial-Roman:RMPR71,2
    Imperial-Roman:RMPR72,2
    Imperial-Roman:RMPR73,2
    Imperial-Roman:RMPR75,2
    Imperial-Roman:RMPR76,2
    Imperial-Roman:RMPR78,2
    Imperial-Roman:RMPR80,2
    Imperial-Roman:RMPR81,2
    Imperial-Roman:RMPR835,2
    Imperial-Roman:RMPR836,2
    Britain_Late_Iron_Age:I16413,3
    Britain_Late_Iron_Age:I16418,3
    Britain_Late_Iron_Age:I2693,3
    Britain_Late_Iron_Age:I27385,3
    Britain_Late_Iron_Age:I2799,3
    Britain_Late_Iron_Age:I3567,3
    Britain_Late_Iron_Age:I3568,3
    Britain_Late_Iron_Age:I14351,3
    Britain_Late_Iron_Age:I5502,3
    Gaul:Champagne_IA2:I19362,3
    Gaul:Champagne_IA2:I20817,3
    Gaul:Alsace_IA2:COL11,3
    Langobard:SZ1:SZ7,3
    Langobard:SZ_no_Kindred:SZ9,3
    Langobard:SZ_no_Kindred:SZ4,3
    Langobard:SZ_no_Kindred:SZ16,3
    Langobard:SZ_no_Kindred:SZ2,3
    Langobard:CL1_Kindred:CL145,3
    Langobard:CL1_Kindred:CL146,3
    Langobard:CL1_Kindred:CL151,3
    Langobard:CL1_Kindred:CL83,3
    Langobard:CL1_Kindred:CL92,3
    Langobard:CL1_Kindred:CL93,3
    Britain_Late_Iron_Age:I16495,4
    Britain_Late_Iron_Age:I27384,4
    Britain_Late_Iron_Age:I3566,4
    Britain_Late_Iron_Age:I11142,4
    Britain_Late_Iron_Age:I11144,4
    Britain_Late_Iron_Age:I11145,4
    Britain_Late_Iron_Age:I12785,4
    Britain_Late_Iron_Age:I12791,4
    Britain_Late_Iron_Age:I12927,4
    Britain_Late_Iron_Age:I12931,4
    Britain_Late_Iron_Age:I12932,4
    Britain_Late_Iron_Age:I13616,4
    Britain_Late_Iron_Age:I14096,4
    Britain_Late_Iron_Age:I14097,4
    Britain_Late_Iron_Age:I14552_d,4
    Britain_Late_Iron_Age:I19870,4
    Britain_Late_Iron_Age:I0525,4
    Britain_Late_Iron_Age:I14106,4
    Britain_Late_Iron_Age:I22057,4
    Britain_Late_Iron_Age:I22062,4
    Britain_Late_Iron_Age:I22064,4
    Langobard:SZ1:SZ12,4
    Langobard:SZ1:SZ13,4
    Langobard:SZ1:SZ15,4
    Langobard:SZ1:SZ22,4
    Langobard:SZ1:SZ24,4
    Langobard:SZ_no_Kindred:SZ3,4
    Langobard:SZ_no_Kindred:SZ11,4
    Langobard:CL1_Kindred:CL84,4
    Last edited by Telfermagne; 06-24-2022 at 03:46 AM.

  14. The Following 4 Users Say Thank You to Telfermagne For This Useful Post:

     Garimund (06-24-2022),  jadegreg (06-24-2022),  JMcB (06-24-2022),  lehmannt (06-24-2022)

  15. #368
    Registered Users
    Posts
    481
    Sex
    Location
    NE Ohio
    Nationality
    U.S. American
    Y-DNA (P)
    R-FT49882
    mtDNA (M)
    H3ap
    Y-DNA (M)
    R-Z255
    mtDNA (P)
    HV9a1

    United States of America
    Let's give this a try.

    Started with selecting all samples that were England_MIA, all IA_La_Tene samples (La Tene_o and low coverage were removed), all Baltic Bronze Age samples (LVA, EST, LTU), all samples prefixed with 'Sarmatian_', all VK2020 samples that were suffixed with _EVA, and all Rome_Late_Antiquity samples.

    Proposed k = 6

    LDA error matrix, jacknifed, yields 89.17% accuracy:
    Attachment 50209

    There were 4 Axis: Axis 1 accounted for 48.3%, Axis 2 accounted for 40.61%, Axis 3 accounted for 7.692%, Axis 4 accounted for 2.843%

    I did a Kmeans test, and proposed 6 clusters. Accuracy was determined by dividing the total in a given cluster by the group majority; e.g.) Cluster 5 was 53 samples, roughly 75% of which were Early Viking, therefore I labelled 'cluster 5' Early Viking but while keeping in mind that it's only 75% accurate. In the case of Rome Late Antiquity, even though all the samples in cluster 2 are 'Roman Late Antiquity' it only accounts for 16 out of the 24 Roman Late Antiquity samples included, so I'm inclined to say that it's only 66.66% accurate.

    Outcome:
    Sarmatian 100%
    Baltic Bronze Age 100%
    England Middle Iron Age 89%
    Rome Late Antiquity 66.66%
    Early Viking 75%
    La Tene 87.75%

    The CSV is in spoiler tags:
     

    Item,Cluster
    England_MIA:I11147,1
    England_MIA:I11148,1
    England_MIA:I11150,1
    England_MIA:I11151,1
    England_MIA:I11153,1
    England_MIA:I11156,1
    England_MIA:I11997,1
    England_MIA:I12770,1
    England_MIA:I12771,1
    England_MIA:I12775,1
    England_MIA:I12778,1
    England_MIA:I12790,1
    England_MIA:I12793,1
    England_MIA:I13615,1
    England_MIA:I13680,1
    England_MIA:I13685,1
    England_MIA:I13687,1
    England_MIA:I13717,1
    England_MIA:I13727,1
    England_MIA:I13728,1
    England_MIA:I13729,1
    England_MIA:I13730,1
    England_MIA:I13731,1
    England_MIA:I13732,1
    England_MIA:I14347,1
    England_MIA:I14348,1
    England_MIA:I14380,1
    England_MIA:I14549,1
    England_MIA:I14551,1
    England_MIA:I14800,1
    England_MIA:I14801,1
    England_MIA:I14802,1
    England_MIA:I14807,1
    England_MIA:I14808,1
    England_MIA:I14858,1
    England_MIA:I14859,1
    England_MIA:I14860,1
    England_MIA:I14863,1
    England_MIA:I14866,1
    England_MIA:I16591,1
    England_MIA:I16592,1
    England_MIA:I16597,1
    England_MIA:I16599,1
    England_MIA:I16611,1
    England_MIA:I17014,1
    England_MIA:I17015,1
    England_MIA:I17016,1
    England_MIA:I17261,1
    England_MIA:I19044,1
    England_MIA:I19045,1
    England_MIA:I19046,1
    England_MIA:I19211,1
    England_MIA:I19652,1
    England_MIA:I19654,1
    England_MIA:I19656,1
    England_MIA:I19854,1
    England_MIA:I19855,1
    England_MIA:I19872,1
    England_MIA:I19873,1
    England_MIA:I19874,1
    England_MIA:I19907,1
    England_MIA:I19908,1
    England_MIA:I19909,1
    England_MIA:I19910,1
    England_MIA:I19911,1
    England_MIA:I19912,1
    England_MIA:I19914,1
    England_MIA:I20582,1
    England_MIA:I20586,1
    England_MIA:I20587,1
    England_MIA:I20588,1
    England_MIA:I20589,1
    England_MIA:I20627,1
    England_MIA:I20990,1
    England_MIA:I21178,1
    England_MIA:I21179,1
    England_MIA:I21180,1
    England_MIA:I21181,1
    England_MIA:I21182,1
    England_MIA:I21271,1
    England_MIA:I21272,1
    England_MIA:I21274,1
    England_MIA:I21275,1
    England_MIA:I21276,1
    England_MIA:I21277,1
    England_MIA:I21293,1
    England_MIA:I3014,1
    England_MIA:I3083,1
    England_MIA:I7632,1
    ITA_Rome_Late_Antiquity:RMPR106,1
    ITA_Rome_Late_Antiquity:RMPR31,1
    CZE_IA_La_Tene:I14987,1
    CZE_IA_La_Tene:I15039,1
    CZE_IA_La_Tene:I15040,1
    CZE_IA_La_Tene:I15044,1
    CZE_IA_La_Tene:I15048,1
    CZE_IA_La_Tene:I15049,1
    CZE_IA_La_Tene:I16273,1
    CZE_IA_La_Tene:I17313,1
    CZE_IA_La_Tene:I17315,1
    CZE_IA_La_Tene:I17320,1
    VK2020_DNK_Sealand_EVA:VK65,1
    VK2020_DNK_Sealand_EVA:VK70,1
    ITA_Rome_Late_Antiquity:RMPR107,2
    ITA_Rome_Late_Antiquity:RMPR117,2
    ITA_Rome_Late_Antiquity:RMPR118,2
    ITA_Rome_Late_Antiquity:RMPR120,2
    ITA_Rome_Late_Antiquity:RMPR121,2
    ITA_Rome_Late_Antiquity:RMPR122,2
    ITA_Rome_Late_Antiquity:RMPR130,2
    ITA_Rome_Late_Antiquity:RMPR133,2
    ITA_Rome_Late_Antiquity:RMPR134,2
    ITA_Rome_Late_Antiquity:RMPR136,2
    ITA_Rome_Late_Antiquity:RMPR137,2
    ITA_Rome_Late_Antiquity:RMPR30,2
    ITA_Rome_Late_Antiquity:RMPR32,2
    ITA_Rome_Late_Antiquity:RMPR34,2
    ITA_Rome_Late_Antiquity:RMPR35,2
    ITA_Rome_Late_Antiquity:RMPR36,2
    ITA_Rome_Late_Antiquity:RMPR104,3
    ITA_Rome_Late_Antiquity:RMPR105,3
    ITA_Rome_Late_Antiquity:RMPR108,3
    ITA_Rome_Late_Antiquity:RMPR109,3
    ITA_Rome_Late_Antiquity:RMPR110,3
    ITA_Rome_Late_Antiquity:RMPR33,3
    AUT_IA_La_Tene:I11699,3
    AUT_IA_La_Tene:I11701,3
    AUT_IA_La_Tene:I11708,3
    CZE_IA_La_Tene:I14984,3
    CZE_IA_La_Tene:I14985,3
    CZE_IA_La_Tene:I14986,3
    CZE_IA_La_Tene:I15042,3
    CZE_IA_La_Tene:I15043,3
    CZE_IA_La_Tene:I15046,3
    CZE_IA_La_Tene:I15047,3
    CZE_IA_La_Tene:I15951,3
    CZE_IA_La_Tene:I15952,3
    CZE_IA_La_Tene:I15954,3
    CZE_IA_La_Tene:I16271,3
    CZE_IA_La_Tene:I17139,3
    CZE_IA_La_Tene:I17143,3
    CZE_IA_La_Tene:I17145,3
    CZE_IA_La_Tene:I17146,3
    CZE_IA_La_Tene:I17314,3
    CZE_IA_La_Tene:I17321,3
    CZE_IA_La_Tene:I17323,3
    CZE_IA_La_Tene:I20519,3
    CZE_IA_La_Tene:I20522,3
    HUN_IA_La_Tene:I18110,3
    HUN_IA_La_Tene:I18488,3
    HUN_IA_La_Tene:I18526,3
    HUN_IA_La_Tene:I18527,3
    HUN_IA_La_Tene:I18528,3
    HUN_IA_La_Tene:I18529,3
    HUN_IA_La_Tene:I18530,3
    HUN_IA_La_Tene:I18531,3
    HUN_IA_La_Tene:I18834,3
    HUN_IA_La_Tene:I18838,3
    HUN_IA_La_Tene:I18839,3
    HUN_IA_La_Tene:I18840,3
    HUN_IA_La_Tene:I25508,3
    HUN_IA_La_Tene:I25510,3
    HUN_IA_La_Tene:I25512,3
    HUN_IA_La_Tene:I25516,3
    HUN_IA_La_Tene:I25518,3
    HUN_IA_La_Tene:I25519,3
    HUN_IA_La_Tene:I25522,3
    HUN_IA_La_Tene:I4996,3
    Baltic_EST_BA:s19_0LS11_1,4
    Baltic_EST_BA:s19_V14_2,4
    Baltic_EST_BA:s19_V16_1,4
    Baltic_EST_BA:s19_V9_2,4
    Baltic_EST_BA:s19_X08_1,4
    Baltic_EST_BA:s19_X10_1,4
    Baltic_EST_BA:s19_X11_1,4
    Baltic_EST_BA:s19_X14_1,4
    Baltic_EST_BA:s19_X15_2,4
    Baltic_EST_BA:s19_X17_2,4
    Baltic_LTU_BA:Turlojiske1,4
    Baltic_LTU_BA:Turlojiske3,4
    Baltic_LVA_BA:Kivutkalns153,4
    Baltic_LVA_BA:Kivutkalns19,4
    Baltic_LVA_BA:Kivutkalns194,4
    Baltic_LVA_BA:Kivutkalns207,4
    Baltic_LVA_BA:Kivutkalns209,4
    Baltic_LVA_BA:Kivutkalns215,4
    Baltic_LVA_BA:Kivutkalns222,4
    Baltic_LVA_BA:Kivutkalns25,4
    Baltic_LVA_BA:Kivutkalns42,4
    Sarmatian_KAZ_Aigyrly:AIG002,5
    Sarmatian_KAZ_Aigyrly:AIG003,5
    Sarmatian_KAZ_Aktobe_o:SBL001,5
    Sarmatian_KAZ_Aktobe:KBU001,5
    Sarmatian_KAZ_Aktobe:KBU003,5
    Sarmatian_KAZ_Aktobe:KSK002,5
    Sarmatian_KAZ_Bisoba:BSB001,5
    Sarmatian_KAZ_Bisoba:BSB002,5
    Sarmatian_KAZ_Bisoba:BSB003,5
    Sarmatian_KAZA26,5
    Sarmatian_KAZA30,5
    Sarmatian_MDA:I11925,5
    Sarmatian_MDA:I11926,5
    Sarmatian_RUS_Caspian_steppeA134,5
    Sarmatian_RUS_Caspian_steppeA136,5
    Sarmatian_RUS_Caspian_steppeA139,5
    Sarmatian_RUS_Caspian_steppeA141,5
    Sarmatian_RUS_Caspian_steppeA143,5
    Sarmatian_RUS_Caspian_steppeA144,5
    Sarmatian_RUS_Caucasus:MJ38,5
    Sarmatian_RUS_Pokrovka:I0574,5
    Sarmatian_RUS_Pokrovka:I0575,5
    Sarmatian_RUS_Urals:chy001,5
    Sarmatian_RUS_Urals:chy002,5
    Sarmatian_RUS_Urals:LS13,5
    Sarmatian_RUS_Urals:MJ39,5
    Sarmatian_RUS_Urals:MJ41,5
    Sarmatian_RUS_Urals:MJ43,5
    Sarmatian_RUS_Urals:MJ44,5
    Sarmatian_RUS_Urals:MJ56,5
    Sarmatian_RUS_Urals:tem001,5
    Sarmatian_RUS_Urals:tem002,5
    Sarmatian_RUS_Urals:tem003,5
    Sarmatian_Segizsay:SGZ001,5
    Sarmatian_Segizsay:SGZ002,5
    England_MIA:I14804,6
    CZE_IA_La_Tene:I13780,6
    CZE_IA_La_Tene:I15045,6
    CZE_IA_La_Tene:I15950,6
    CZE_IA_La_Tene:I16268,6
    CZE_IA_La_Tene:I16270,6
    CZE_IA_La_Tene:I16272,6
    CZE_IA_La_Tene:I17316,6
    CZE_IA_La_Tene:I17317,6
    CZE_IA_La_Tene:I17322,6
    CZE_IA_La_Tene:I17327,6
    HUN_IA_La_Tene:I20752,6
    HUN_IA_La_Tene:I20774,6
    VK2020_DNK_Sealand_EVA:VK296,6
    VK2020_DNK_Sealand_EVA:VK297,6
    VK2020_DNK_Sealand_EVA:VK69,6
    VK2020_DNK_Sealand_EVA:VK71,6
    VK2020_EST_Saaremaa_EVA:VK480,6
    VK2020_EST_Saaremaa_EVA:VK481,6
    VK2020_EST_Saaremaa_EVA:VK482,6
    VK2020_EST_Saaremaa_EVA:VK483,6
    VK2020_EST_Saaremaa_EVA:VK484,6
    VK2020_EST_Saaremaa_EVA:VK485,6
    VK2020_EST_Saaremaa_EVA:VK486,6
    VK2020_EST_Saaremaa_EVA:VK487,6
    VK2020_EST_Saaremaa_EVA:VK488,6
    VK2020_EST_Saaremaa_EVA:VK489,6
    VK2020_EST_Saaremaa_EVA:VK490,6
    VK2020_EST_Saaremaa_EVA:VK491,6
    VK2020_EST_Saaremaa_EVA:VK492,6
    VK2020_EST_Saaremaa_EVA:VK493,6
    VK2020_EST_Saaremaa_EVA:VK495,6
    VK2020_EST_Saaremaa_EVA:VK496,6
    VK2020_EST_Saaremaa_EVA:VK497,6
    VK2020_EST_Saaremaa_EVA:VK498,6
    VK2020_EST_Saaremaa_EVA:VK504,6
    VK2020_EST_Saaremaa_EVA:VK505,6
    VK2020_EST_Saaremaa_EVA:VK506,6
    VK2020_EST_Saaremaa_EVA:VK507,6
    VK2020_EST_Saaremaa_EVA:VK508,6
    VK2020_EST_Saaremaa_EVA:VK509,6
    VK2020_EST_Saaremaa_EVA:VK510,6
    VK2020_EST_Saaremaa_EVA:VK511,6
    VK2020_EST_Saaremaa_EVA:VK512,6
    VK2020_EST_Saaremaa_EVA:VK549,6
    VK2020_EST_Saaremaa_EVA:VK550,6
    VK2020_EST_Saaremaa_EVA:VK551,6
    VK2020_EST_Saaremaa_EVA:VK552,6
    VK2020_EST_Saaremaa_EVA:VK553,6
    VK2020_EST_Saaremaa_EVA:VK554,6
    VK2020_EST_Saaremaa_EVA:VK555,6
    VK2020_SWE_Oland_EVA:VK379,6
    VK2020_SWE_Oland_EVA:VK382,6


    PCA with group averages:
    Attachment 50208

    Model:
     
    ,PC1,PC2,PC3,PC4,PC5,PC6,PC7,PC8,PC9,PC10,PC11,PC1 2,PC13,PC14,PC15,PC16,PC17,PC18,PC19,PC20,PC21,PC2 2,PC23,PC24,PC25
    Britain_Middle_Iron_Age,0.129948033,0.135595689,0. 060544644,0.047096989,0.040103078,0.016293422,0.00 2172444,0.004925422,0.007587844,0.005888244,-0.004970867,0.006729078,-0.014942056,-0.0153847,0.021486033,0.006408522,-0.005032833,0.002073478,0.001625678,0.003621189,0. 006135,0.004178156,-0.001787111,0.005566922,-0.0016192
    Rome_Late_Antiquity_Average,0.113016875,0.14877504 2,0.005735458,-0.029837125,0.023876167,-0.012399,-0.000450417,-0.002663292,0.006791958,0.023903292,0.0014005,0.00 502675,-0.00834975,-0.003107958,-0.004552292,-0.000491708,0.004286458,0.0005385,0.003273458,-0.00149025,-0.000993042,0.001607542,-0.000919208,0.000261083,-0.001247375
    La_Tène_Average,0.128497523,0.140768015,0.05396306 2,0.027380462,0.042346323,0.007658769,0.002433169, 0.003617569,0.009537108,0.0144892,-0.003610031,0.005150785,-0.012112415,-0.006425846,0.004865046,0.003663523,0.000684031,0. 001489046,0.002423062,0.002074077,0.002188477,0.00 3431785,-0.001647692,-0.000598769,-0.001803585
    Early_Viking_Average,0.127400571,0.127400643,0.072 775286,0.062846571,0.044169333,0.022849071,0.00501 3429,0.009917238,0.004236595,-0.008946929,-0.003282524,0.00131319,-0.003543095,-0.002680405,0.017889214,0.00752919,-0.006630952,0.001918405,0.004339595,0.004913119,0. 007974071,0.002316976,0.001103286,0.011079976,0.00 1787714
    Sarmatian_Average,0.109595343,0.044886429,0.036440 743,0.065522857,-0.025411143,0.024773514,0.001027286,-3.95429E-05,-0.027113914,-0.035645429,-0.003646771,-0.000509486,-0.000696514,-0.0215438,0.0208272,0.012425629,-0.0043362,0.000347543,-0.001081,0.000432286,-0.009579514,0.001953686,0.000450743,0.0056324,-0.001645657
    Baltic_Bronze_Age_Average,0.131167476,0.124378095, 0.098823571,0.109728476,0.049195857,0.039974381,0. 014470143,0.018867286,-0.001928333,-0.049646333,0.000085,-0.018490714,0.032677048,0.040205476,-0.016713095,0.001092333,0.005010333,-0.000699667,-0.001268905,0.005603905,-0.00258481,-0.005093333,0.009073429,-0.019245333,0.003084857


    Results:
    [1] "distance%=2.0827"

    Dad

    Britain_Middle_Iron_Age,72.2
    Early_Viking_Average,21.8
    La_Tène_Average,4.8
    Rome_Late_Antiquity_Average,1.2

    [1] "distance%=2.2292"

    Mom

    La_Tène_Average,40.2
    Britain_Middle_Iron_Age,37
    Rome_Late_Antiquity_Average,13
    Early_Viking_Average,9.8

    [1] "distance%=2.0289"

    Me

    Britain_Middle_Iron_Age,75.4
    La_Tène_Average,18.4
    Rome_Late_Antiquity_Average,6.2
    Last edited by Telfermagne; 06-24-2022 at 05:47 AM.

  16. The Following 14 Users Say Thank You to Telfermagne For This Useful Post:

     Anglecynn (06-24-2022),  Aroon1916 (06-24-2022),  Dewsloth (06-24-2022),  Finn (06-24-2022),  Garimund (06-24-2022),  jadegreg (06-24-2022),  Jessie (06-24-2022),  JMcB (06-24-2022),  lehmannt (06-24-2022),  lg16 (06-24-2022),  MitchellSince1893 (06-24-2022),  RVBLAKE (06-26-2022),  TOMESQ (06-24-2022),  Wâldpykjong (06-24-2022)

  17. #369
    Gold Class Member
    Posts
    802
    Sex
    Y-DNA (P)
    R1b>DF27
    mtDNA (M)
    J1c5

    United States of America England Northern Ireland Scotland Normandie
    Quote Originally Posted by Telfermagne View Post
    Let's give this a try.

    Started with selecting all samples that were England_MIA, all IA_La_Tene samples (La Tene_o and low coverage were removed), all Baltic Bronze Age samples (LVA, EST, LTU), all samples prefixed with 'Sarmatian_', all VK2020 samples that were suffixed with _EVA, and all Rome_Late_Antiquity samples.

    Proposed k = 6

    LDA error matrix, jacknifed, yields 89.17% accuracy:
    Attachment 50209

    There were 4 Axis: Axis 1 accounted for 48.3%, Axis 2 accounted for 40.61%, Axis 3 accounted for 7.692%, Axis 4 accounted for 2.843%

    I did a Kmeans test, and proposed 6 clusters. Accuracy was determined by dividing the total in a given cluster by the group majority; e.g.) Cluster 5 was 53 samples, roughly 75% of which were Early Viking, therefore I labelled 'cluster 5' Early Viking but while keeping in mind that it's only 75% accurate. In the case of Rome Late Antiquity, even though all the samples in cluster 2 are 'Roman Late Antiquity' it only accounts for 16 out of the 24 Roman Late Antiquity samples included, so I'm inclined to say that it's only 66.66% accurate.

    Outcome:
    Sarmatian 100%
    Baltic Bronze Age 100%
    England Middle Iron Age 89%
    Rome Late Antiquity 66.66%
    Early Viking 75%
    La Tene 87.75%

    The CSV is in spoiler tags:
     

    Item,Cluster
    England_MIA:I11147,1
    England_MIA:I11148,1
    England_MIA:I11150,1
    England_MIA:I11151,1
    England_MIA:I11153,1
    England_MIA:I11156,1
    England_MIA:I11997,1
    England_MIA:I12770,1
    England_MIA:I12771,1
    England_MIA:I12775,1
    England_MIA:I12778,1
    England_MIA:I12790,1
    England_MIA:I12793,1
    England_MIA:I13615,1
    England_MIA:I13680,1
    England_MIA:I13685,1
    England_MIA:I13687,1
    England_MIA:I13717,1
    England_MIA:I13727,1
    England_MIA:I13728,1
    England_MIA:I13729,1
    England_MIA:I13730,1
    England_MIA:I13731,1
    England_MIA:I13732,1
    England_MIA:I14347,1
    England_MIA:I14348,1
    England_MIA:I14380,1
    England_MIA:I14549,1
    England_MIA:I14551,1
    England_MIA:I14800,1
    England_MIA:I14801,1
    England_MIA:I14802,1
    England_MIA:I14807,1
    England_MIA:I14808,1
    England_MIA:I14858,1
    England_MIA:I14859,1
    England_MIA:I14860,1
    England_MIA:I14863,1
    England_MIA:I14866,1
    England_MIA:I16591,1
    England_MIA:I16592,1
    England_MIA:I16597,1
    England_MIA:I16599,1
    England_MIA:I16611,1
    England_MIA:I17014,1
    England_MIA:I17015,1
    England_MIA:I17016,1
    England_MIA:I17261,1
    England_MIA:I19044,1
    England_MIA:I19045,1
    England_MIA:I19046,1
    England_MIA:I19211,1
    England_MIA:I19652,1
    England_MIA:I19654,1
    England_MIA:I19656,1
    England_MIA:I19854,1
    England_MIA:I19855,1
    England_MIA:I19872,1
    England_MIA:I19873,1
    England_MIA:I19874,1
    England_MIA:I19907,1
    England_MIA:I19908,1
    England_MIA:I19909,1
    England_MIA:I19910,1
    England_MIA:I19911,1
    England_MIA:I19912,1
    England_MIA:I19914,1
    England_MIA:I20582,1
    England_MIA:I20586,1
    England_MIA:I20587,1
    England_MIA:I20588,1
    England_MIA:I20589,1
    England_MIA:I20627,1
    England_MIA:I20990,1
    England_MIA:I21178,1
    England_MIA:I21179,1
    England_MIA:I21180,1
    England_MIA:I21181,1
    England_MIA:I21182,1
    England_MIA:I21271,1
    England_MIA:I21272,1
    England_MIA:I21274,1
    England_MIA:I21275,1
    England_MIA:I21276,1
    England_MIA:I21277,1
    England_MIA:I21293,1
    England_MIA:I3014,1
    England_MIA:I3083,1
    England_MIA:I7632,1
    ITA_Rome_Late_Antiquity:RMPR106,1
    ITA_Rome_Late_Antiquity:RMPR31,1
    CZE_IA_La_Tene:I14987,1
    CZE_IA_La_Tene:I15039,1
    CZE_IA_La_Tene:I15040,1
    CZE_IA_La_Tene:I15044,1
    CZE_IA_La_Tene:I15048,1
    CZE_IA_La_Tene:I15049,1
    CZE_IA_La_Tene:I16273,1
    CZE_IA_La_Tene:I17313,1
    CZE_IA_La_Tene:I17315,1
    CZE_IA_La_Tene:I17320,1
    VK2020_DNK_Sealand_EVA:VK65,1
    VK2020_DNK_Sealand_EVA:VK70,1
    ITA_Rome_Late_Antiquity:RMPR107,2
    ITA_Rome_Late_Antiquity:RMPR117,2
    ITA_Rome_Late_Antiquity:RMPR118,2
    ITA_Rome_Late_Antiquity:RMPR120,2
    ITA_Rome_Late_Antiquity:RMPR121,2
    ITA_Rome_Late_Antiquity:RMPR122,2
    ITA_Rome_Late_Antiquity:RMPR130,2
    ITA_Rome_Late_Antiquity:RMPR133,2
    ITA_Rome_Late_Antiquity:RMPR134,2
    ITA_Rome_Late_Antiquity:RMPR136,2
    ITA_Rome_Late_Antiquity:RMPR137,2
    ITA_Rome_Late_Antiquity:RMPR30,2
    ITA_Rome_Late_Antiquity:RMPR32,2
    ITA_Rome_Late_Antiquity:RMPR34,2
    ITA_Rome_Late_Antiquity:RMPR35,2
    ITA_Rome_Late_Antiquity:RMPR36,2
    ITA_Rome_Late_Antiquity:RMPR104,3
    ITA_Rome_Late_Antiquity:RMPR105,3
    ITA_Rome_Late_Antiquity:RMPR108,3
    ITA_Rome_Late_Antiquity:RMPR109,3
    ITA_Rome_Late_Antiquity:RMPR110,3
    ITA_Rome_Late_Antiquity:RMPR33,3
    AUT_IA_La_Tene:I11699,3
    AUT_IA_La_Tene:I11701,3
    AUT_IA_La_Tene:I11708,3
    CZE_IA_La_Tene:I14984,3
    CZE_IA_La_Tene:I14985,3
    CZE_IA_La_Tene:I14986,3
    CZE_IA_La_Tene:I15042,3
    CZE_IA_La_Tene:I15043,3
    CZE_IA_La_Tene:I15046,3
    CZE_IA_La_Tene:I15047,3
    CZE_IA_La_Tene:I15951,3
    CZE_IA_La_Tene:I15952,3
    CZE_IA_La_Tene:I15954,3
    CZE_IA_La_Tene:I16271,3
    CZE_IA_La_Tene:I17139,3
    CZE_IA_La_Tene:I17143,3
    CZE_IA_La_Tene:I17145,3
    CZE_IA_La_Tene:I17146,3
    CZE_IA_La_Tene:I17314,3
    CZE_IA_La_Tene:I17321,3
    CZE_IA_La_Tene:I17323,3
    CZE_IA_La_Tene:I20519,3
    CZE_IA_La_Tene:I20522,3
    HUN_IA_La_Tene:I18110,3
    HUN_IA_La_Tene:I18488,3
    HUN_IA_La_Tene:I18526,3
    HUN_IA_La_Tene:I18527,3
    HUN_IA_La_Tene:I18528,3
    HUN_IA_La_Tene:I18529,3
    HUN_IA_La_Tene:I18530,3
    HUN_IA_La_Tene:I18531,3
    HUN_IA_La_Tene:I18834,3
    HUN_IA_La_Tene:I18838,3
    HUN_IA_La_Tene:I18839,3
    HUN_IA_La_Tene:I18840,3
    HUN_IA_La_Tene:I25508,3
    HUN_IA_La_Tene:I25510,3
    HUN_IA_La_Tene:I25512,3
    HUN_IA_La_Tene:I25516,3
    HUN_IA_La_Tene:I25518,3
    HUN_IA_La_Tene:I25519,3
    HUN_IA_La_Tene:I25522,3
    HUN_IA_La_Tene:I4996,3
    Baltic_EST_BA:s19_0LS11_1,4
    Baltic_EST_BA:s19_V14_2,4
    Baltic_EST_BA:s19_V16_1,4
    Baltic_EST_BA:s19_V9_2,4
    Baltic_EST_BA:s19_X08_1,4
    Baltic_EST_BA:s19_X10_1,4
    Baltic_EST_BA:s19_X11_1,4
    Baltic_EST_BA:s19_X14_1,4
    Baltic_EST_BA:s19_X15_2,4
    Baltic_EST_BA:s19_X17_2,4
    Baltic_LTU_BA:Turlojiske1,4
    Baltic_LTU_BA:Turlojiske3,4
    Baltic_LVA_BA:Kivutkalns153,4
    Baltic_LVA_BA:Kivutkalns19,4
    Baltic_LVA_BA:Kivutkalns194,4
    Baltic_LVA_BA:Kivutkalns207,4
    Baltic_LVA_BA:Kivutkalns209,4
    Baltic_LVA_BA:Kivutkalns215,4
    Baltic_LVA_BA:Kivutkalns222,4
    Baltic_LVA_BA:Kivutkalns25,4
    Baltic_LVA_BA:Kivutkalns42,4
    Sarmatian_KAZ_Aigyrly:AIG002,5
    Sarmatian_KAZ_Aigyrly:AIG003,5
    Sarmatian_KAZ_Aktobe_o:SBL001,5
    Sarmatian_KAZ_Aktobe:KBU001,5
    Sarmatian_KAZ_Aktobe:KBU003,5
    Sarmatian_KAZ_Aktobe:KSK002,5
    Sarmatian_KAZ_Bisoba:BSB001,5
    Sarmatian_KAZ_Bisoba:BSB002,5
    Sarmatian_KAZ_Bisoba:BSB003,5
    Sarmatian_KAZA26,5
    Sarmatian_KAZA30,5
    Sarmatian_MDA:I11925,5
    Sarmatian_MDA:I11926,5
    Sarmatian_RUS_Caspian_steppeA134,5
    Sarmatian_RUS_Caspian_steppeA136,5
    Sarmatian_RUS_Caspian_steppeA139,5
    Sarmatian_RUS_Caspian_steppeA141,5
    Sarmatian_RUS_Caspian_steppeA143,5
    Sarmatian_RUS_Caspian_steppeA144,5
    Sarmatian_RUS_Caucasus:MJ38,5
    Sarmatian_RUS_Pokrovka:I0574,5
    Sarmatian_RUS_Pokrovka:I0575,5
    Sarmatian_RUS_Urals:chy001,5
    Sarmatian_RUS_Urals:chy002,5
    Sarmatian_RUS_Urals:LS13,5
    Sarmatian_RUS_Urals:MJ39,5
    Sarmatian_RUS_Urals:MJ41,5
    Sarmatian_RUS_Urals:MJ43,5
    Sarmatian_RUS_Urals:MJ44,5
    Sarmatian_RUS_Urals:MJ56,5
    Sarmatian_RUS_Urals:tem001,5
    Sarmatian_RUS_Urals:tem002,5
    Sarmatian_RUS_Urals:tem003,5
    Sarmatian_Segizsay:SGZ001,5
    Sarmatian_Segizsay:SGZ002,5
    England_MIA:I14804,6
    CZE_IA_La_Tene:I13780,6
    CZE_IA_La_Tene:I15045,6
    CZE_IA_La_Tene:I15950,6
    CZE_IA_La_Tene:I16268,6
    CZE_IA_La_Tene:I16270,6
    CZE_IA_La_Tene:I16272,6
    CZE_IA_La_Tene:I17316,6
    CZE_IA_La_Tene:I17317,6
    CZE_IA_La_Tene:I17322,6
    CZE_IA_La_Tene:I17327,6
    HUN_IA_La_Tene:I20752,6
    HUN_IA_La_Tene:I20774,6
    VK2020_DNK_Sealand_EVA:VK296,6
    VK2020_DNK_Sealand_EVA:VK297,6
    VK2020_DNK_Sealand_EVA:VK69,6
    VK2020_DNK_Sealand_EVA:VK71,6
    VK2020_EST_Saaremaa_EVA:VK480,6
    VK2020_EST_Saaremaa_EVA:VK481,6
    VK2020_EST_Saaremaa_EVA:VK482,6
    VK2020_EST_Saaremaa_EVA:VK483,6
    VK2020_EST_Saaremaa_EVA:VK484,6
    VK2020_EST_Saaremaa_EVA:VK485,6
    VK2020_EST_Saaremaa_EVA:VK486,6
    VK2020_EST_Saaremaa_EVA:VK487,6
    VK2020_EST_Saaremaa_EVA:VK488,6
    VK2020_EST_Saaremaa_EVA:VK489,6
    VK2020_EST_Saaremaa_EVA:VK490,6
    VK2020_EST_Saaremaa_EVA:VK491,6
    VK2020_EST_Saaremaa_EVA:VK492,6
    VK2020_EST_Saaremaa_EVA:VK493,6
    VK2020_EST_Saaremaa_EVA:VK495,6
    VK2020_EST_Saaremaa_EVA:VK496,6
    VK2020_EST_Saaremaa_EVA:VK497,6
    VK2020_EST_Saaremaa_EVA:VK498,6
    VK2020_EST_Saaremaa_EVA:VK504,6
    VK2020_EST_Saaremaa_EVA:VK505,6
    VK2020_EST_Saaremaa_EVA:VK506,6
    VK2020_EST_Saaremaa_EVA:VK507,6
    VK2020_EST_Saaremaa_EVA:VK508,6
    VK2020_EST_Saaremaa_EVA:VK509,6
    VK2020_EST_Saaremaa_EVA:VK510,6
    VK2020_EST_Saaremaa_EVA:VK511,6
    VK2020_EST_Saaremaa_EVA:VK512,6
    VK2020_EST_Saaremaa_EVA:VK549,6
    VK2020_EST_Saaremaa_EVA:VK550,6
    VK2020_EST_Saaremaa_EVA:VK551,6
    VK2020_EST_Saaremaa_EVA:VK552,6
    VK2020_EST_Saaremaa_EVA:VK553,6
    VK2020_EST_Saaremaa_EVA:VK554,6
    VK2020_EST_Saaremaa_EVA:VK555,6
    VK2020_SWE_Oland_EVA:VK379,6
    VK2020_SWE_Oland_EVA:VK382,6


    PCA with group averages:
    Attachment 50208

    Model:
     
    ,PC1,PC2,PC3,PC4,PC5,PC6,PC7,PC8,PC9,PC10,PC11,PC1 2,PC13,PC14,PC15,PC16,PC17,PC18,PC19,PC20,PC21,PC2 2,PC23,PC24,PC25
    Britain_Middle_Iron_Age,0.129948033,0.135595689,0. 060544644,0.047096989,0.040103078,0.016293422,0.00 2172444,0.004925422,0.007587844,0.005888244,-0.004970867,0.006729078,-0.014942056,-0.0153847,0.021486033,0.006408522,-0.005032833,0.002073478,0.001625678,0.003621189,0. 006135,0.004178156,-0.001787111,0.005566922,-0.0016192
    Rome_Late_Antiquity_Average,0.113016875,0.14877504 2,0.005735458,-0.029837125,0.023876167,-0.012399,-0.000450417,-0.002663292,0.006791958,0.023903292,0.0014005,0.00 502675,-0.00834975,-0.003107958,-0.004552292,-0.000491708,0.004286458,0.0005385,0.003273458,-0.00149025,-0.000993042,0.001607542,-0.000919208,0.000261083,-0.001247375
    La_Tène_Average,0.128497523,0.140768015,0.05396306 2,0.027380462,0.042346323,0.007658769,0.002433169, 0.003617569,0.009537108,0.0144892,-0.003610031,0.005150785,-0.012112415,-0.006425846,0.004865046,0.003663523,0.000684031,0. 001489046,0.002423062,0.002074077,0.002188477,0.00 3431785,-0.001647692,-0.000598769,-0.001803585
    Early_Viking_Average,0.127400571,0.127400643,0.072 775286,0.062846571,0.044169333,0.022849071,0.00501 3429,0.009917238,0.004236595,-0.008946929,-0.003282524,0.00131319,-0.003543095,-0.002680405,0.017889214,0.00752919,-0.006630952,0.001918405,0.004339595,0.004913119,0. 007974071,0.002316976,0.001103286,0.011079976,0.00 1787714
    Sarmatian_Average,0.109595343,0.044886429,0.036440 743,0.065522857,-0.025411143,0.024773514,0.001027286,-3.95429E-05,-0.027113914,-0.035645429,-0.003646771,-0.000509486,-0.000696514,-0.0215438,0.0208272,0.012425629,-0.0043362,0.000347543,-0.001081,0.000432286,-0.009579514,0.001953686,0.000450743,0.0056324,-0.001645657
    Baltic_Bronze_Age_Average,0.131167476,0.124378095, 0.098823571,0.109728476,0.049195857,0.039974381,0. 014470143,0.018867286,-0.001928333,-0.049646333,0.000085,-0.018490714,0.032677048,0.040205476,-0.016713095,0.001092333,0.005010333,-0.000699667,-0.001268905,0.005603905,-0.00258481,-0.005093333,0.009073429,-0.019245333,0.003084857


    Results:
    [1] "distance%=2.0827"

    Dad

    Britain_Middle_Iron_Age,72.2
    Early_Viking_Average,21.8
    La_Tène_Average,4.8
    Rome_Late_Antiquity_Average,1.2

    [1] "distance%=2.2292"

    Mom

    La_Tène_Average,40.2
    Britain_Middle_Iron_Age,37
    Rome_Late_Antiquity_Average,13
    Early_Viking_Average,9.8

    [1] "distance%=2.0289"

    Me

    Britain_Middle_Iron_Age,75.4
    La_Tène_Average,18.4
    Rome_Late_Antiquity_Average,6.2
    Target: garimund_anc_scaled
    Distance: 2.7366% / 0.02736611
    72.4 Britain_Middle_Iron_Age
    24.0 La_Tène_Average
    3.6 Rome_Late_Antiquity_Average

    Can you post this model using individual samples?

  18. The Following 10 Users Say Thank You to Garimund For This Useful Post:

     Anglecynn (06-25-2022),  Aroon1916 (06-24-2022),  boilermeschew827 (06-24-2022),  jadegreg (06-24-2022),  JMcB (06-24-2022),  lehmannt (06-24-2022),  lg16 (06-24-2022),  Telfermagne (06-24-2022),  TOMESQ (06-24-2022),  Wâldpykjong (06-24-2022)

  19. #370
    Registered Users
    Posts
    67
    Sex

    United States of America
    Target: lg_scaled
    Distance: 1.3974% / 0.01397425
    73.0 Britain_Middle_Iron_Age
    27.0 La_Tène_Average


    Distance to: lg_scaled
    0.01657462 Britain_Middle_Iron_Age
    0.02781736 La_Tène_Average
    0.04260723 Early_Viking_Average
    0.10364409 Rome_Late_Antiquity_Average
    0.14041279 Sarmatian_Average
    0.14057639 Baltic_Bronze_Age_Average

  20. The Following 10 Users Say Thank You to lg16 For This Useful Post:

     Anglecynn (06-25-2022),  Aroon1916 (06-24-2022),  boilermeschew827 (06-24-2022),  jadegreg (06-24-2022),  Jessie (06-24-2022),  JMcB (06-24-2022),  lehmannt (06-24-2022),  Telfermagne (06-24-2022),  TOMESQ (06-24-2022),  Wâldpykjong (06-24-2022)

Page 37 of 41 FirstFirst ... 273536373839 ... LastLast

Similar Threads

  1. Replies: 959
    Last Post: 06-29-2022, 05:39 PM
  2. Eastern Europe G25: Iron Age - Medieval
    By Dorkymon in forum Autosomal (auDNA)
    Replies: 123
    Last Post: 01-10-2022, 10:03 PM
  3. Replies: 39
    Last Post: 09-07-2021, 06:51 PM
  4. Replies: 28
    Last Post: 11-30-2020, 07:32 PM
  5. Replies: 0
    Last Post: 05-06-2017, 06:07 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •